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The Dark Forest: Understanding Security Risks of
Cross-Party Delegated Resources in Mobile

App-in-App Ecosystems
Zhibo Zhang , Lei Zhang , Guangliang Yang , Yanjun Chen , Jiahao Xu, and Min Yang

Abstract— In app-in-app ecosystems, mobile applications
(i.e., host apps) often delegate their rich resources to hosted
parties (i.e., sub-apps), which can be utilized to provide millions of
effective services including shopping, banking, and government.
These resources vary from system abilities (e.g., web socket and
GPS location) to app and user data (e.g., storage and phone
number). This leads to an important research question—carefully
design and enforce security regulations on these cross-party
delegated resources (CPDR). Real-world host apps, according to
our study, adopt 11 common security regulations in protecting
the integrity, confidentiality, and availability of CPDR. However,
existing practice and compliance between host apps and sub-apps
are vague and inconsistent, leading to violations of these security
regulations. To the best of our knowledge, no prior works have
studied these security regulations. In this paper, we perform the
first systematic study of the security regulations and their security
weaknesses in real-world app-in-app ecosystems. We propose
three novel attack vectors including masquerade attack, data-
driven attack, and channel hijacking. We find that violations
of the common security regulations are widespread among
all 9 studied app-in-app ecosystems. More importantly, such
security weakness can lead to severe consequences such as
manipulating sub-apps’ back-end servers and stealing sensitive
user data. We responsibly report all of our findings to host
app developers of affected app-in-app ecosystems and help them
fix their vulnerabilities. The code of this work is available at
https://github.com/TitaniumB/MiniAppSecurity.git.

Index Terms— App-in-app ecosystem, security regulation, vul-
nerability analysis.
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I. INTRODUCTION

NOWADAYS, mobile applications (apps) bring significant
convenience to people’s work and daily lives. To provide

better services and attract more users, high-profile mobile apps
are involving numerous essential services; thus, allowing their
users to do anything (e.g., online shopping and restaurant
reservation) but without leaving these apps. To this end,
some mobile apps–or called host apps–apply a new design
paradigm, namely “app-in-app”, that offers an in-app runtime,
and provides rich functionalities to plentiful “sub-apps”. Thus,
complicated services, such as file management, one-click
login, and in-app payment, can be broken down into smaller
tasks that are dealt with by different sub-app participants.
As of today, over 47 popular super-apps1 (e.g., TikTok and
Snapchat), as well as ten device vendors (e.g., Xiaomi and
Huawei), offer app-in-app features. As a prominent example,
WeChat, one of the most used apps in the world, has more
than 3.8 million sub-apps with over 450 million daily active
users [1], even much more than the apps in Google Play [2].
With the emerging popularity of app-in-app ecosystem,2 its
security becomes critical.

Figure 1 illustrates a typical architecture of the app-in-app
ecosystem. Commonly, a host app3 provides sub-apps with
rich resources, which help sub-apps to implement a large num-
ber of effective online services, such as banking, education,
government, shopping, and pandemic. We find these resources
are often sensitive and diverse, including system function-
alities and resources (e.g., web socket, GPS location, and
microphone), and also user and app data (e.g., phone number,
user account, and contact). One important research problem is
ensuring the security of these cross-party delegated resources
(CPDR) in the app-in-app ecosystem. However, there still lacks
a thorough understanding of CPDR, and its security is rarely
investigated. To this end, millions of users and crucial institu-
tions are at risks, including one-click user account hijacking
in TikTok [3], and potential data leakage in numerous banking
services [4]. Motivated by the security concerns, we conduct
the first systematic study on the app-in-app ecosystem and
the security protection of CPDR. Nevertheless, this is not an
easy task, as there exists no standard security practices for

1A super-app is often granted with a lot of system permissions and may
have partnerships with the mobile device vendor.

2We define a community that develops and maintains sub-apps as the
mobile app-in-app ecosystem.

3Without loss of generality, we use host app to refer to both super-app and
device vendor that support app-in-app feature in the paper.
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Fig. 1. Typical structure of app-in-app ecosystems with cross-party resource
delegation.

TABLE I
TOP 9 POPULAR HOST APPS AND THEIR SUB-APP MARKETS. MAU

INDICATES THE AVERAGE MONTHLY ACTIVE USERS

the protection of CPDR. Different host apps often enable and
enforce totally different security implications. Worse still, the
security regulations applied in host apps are often quite vague,
as many regulations are essentially provided and deployed in
the server side. In addition, a part of security responsibilities
are left to sub-app developers, who often have inadequate
security expertise or improper–in some cases–compliance with
security regulations. Such differentiated and vague security
practices make it difficult in protecting the CPDR in the app-
in-app ecosystem.

To address the challenges, our first step is investigating
and understanding the security regulations that should be
followed and enforced by real-world host and sub-apps. One
key observation is that although such security enforcement
is often unknown and deployed in server side or require
involvement of the sub-app, the code of host apps, as well
as their development manuals (for sub-app development), can
actually reflect the security implications of their app-in-app
features. Therefore, we perform code reverse-engineering and
documentation analysis, and conduct a comparative study on
nine most popular app-in-app ecosystems (Table I). Con-
sequently, we summarize and unify 11 common security
regulations (CSRs) on CPDR from the perspectives of integrity,
confidentiality, and availability (see §II-C for more details.).

Next, we further study whether there are security violations
in practice. The fact is, beneath the similarity of resource
delivery, security enforcement in different app-in-app ecosys-
tems is inadequate and inconsistent, potentially causing serious
security hazards. There exists security flaws in both sides of
host apps and sub-apps∶
● On the aspect of host apps, they fail to provide a

sound and robust isolation and access control mechanisms
in protecting the resources in multi-party environment.
For instance, host apps rely on the in-app component
(e.g., WebView) as the infrastructure of in-app run-
time, which is intended to load trusted content but does
not facilitate precise identity recognition [5]. Host apps
cannot correctly determine whether the CPDR interface
caller is authorized to enforce a right access control.

● On the aspect of sub-apps, due to the lack of security
standardization and testing, their development and usage
of CPDR interfaces do not also comply with security
regulations, exposing sensitive resources to attackers. For
instance, in the case of Baidu, it delegates an encrypted
phone number to the sub-app using the CPDR inter-
face called getPhoneNumber and requires the sub-app
server to obtain the decryption key for decryption. How-
ever, sub-apps frequently decrypt in their front end for
convenience, violating the back end decryption regula-
tion, which can result in any account hijacking.

In summary, our analysis reveals seven types of security
weakness, grouped into three attack vectors: (i) an unprivileged
web content or sub-app can launch masquerade attack to
gain privileged abilities (detailed in § IV); (ii) malicious web
content or sub-app can launch data-driven attack for manipu-
lating other sub-apps and steal their sensitive data (detailed in
§ V); and (iii) a man-in-the-middle attacker launches channel
hijacking for accessing sensitive data and even tampering the
sub-app’s back-end servers (detailed in §VI).

To get close to the above attacks’ security impact in real-
world app-in-app ecosystems, we first measure the prevalence
of security weaknesses with the help of differential analysis
and penetration samples (detailed in § VII). We select nine
representative4 host apps and find that all of them have failed
to enforce CSRs. On average, 27.5% of their sub-apps (out of a
total of 202,273) become attack surface for loading malicious
web content; besides, a half of sub-apps failed in compliance
with CSRs may leak their sensitive data. More results can be
found in § VIII.

We also perform case studies to illustrate the security
consequences of these identified weaknesses and found that,
the security consequences are profound and widespread.
● A weakness of host apps can compromise the security of

millions of sub-apps. For example, with encryption failure
of phone number in host app, sub-apps are vulnerable
to account hijacking even if they enforce encryption in
transmission to their server side.

● One small leak of sub-app can sink the great ship of
host app. For example, when malicious web content is
loaded into one vulnerable sub-app in Alipay, this web
content can exploit privileged abilities of Alipay and
access sensitive data stored in its back-end server.

4We choose host apps from manufacturers based on popularity, degree of
development, and uniqueness. As detailed in subsection II-A.
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More interestingly, our study shows that the insecure
resource delegation brings significant bucket effects to app-
in-app ecosystems. That is, a vulnerable delegation process
could break the security assumption in another app-in-app
ecosystem running the sub-app or mobile app developed by
the same sub-app provider, leading to a more serious data
leakage. For example, with a leaked login token of HuoLaLa
sub-app, its mobile app version with the same authentication
process is also vulnerable, thus attacker can exploit the app’s
service, which contains more functionalities including access
to contact book, e-wallet, and even bank card.

A. Contributions
We summarize the contributions of this paper as below∶
● New understanding of the app-in-app ecosystems. We

perform the first systematic measurement study to demys-
tify the complexity of CPDR in app-in-app ecosystem.
We conclude 11 common security regulations with the
goal of integrity, confidentiality, availability of sensitive
data and privileged abilities.

● Insecure resource delegation identification and verifica-
tion. We identify three novel attack vectors, containing
seven security weaknesses in real-world app-in-app
ecosystems. Such weaknesses can further lead to severe
consequences such as ability re-delegation, data leakage,
and privilege escalation. We further design and implement
a penetration and differential analysis framework to verify
the security weakness in CPDR.

● Shed light on securing app-in-app ecosystems. We thor-
oughly study why these insecure resource deliveries exist
and help to secure the CPDR in app-in-app ecosystem.

B. This Submission is an Extension of Our Conference
Paper [6]

In comparison, we present new contributions especially
on the analysis of diversified security enforcement including:
(a) new understanding of cross-party interaction in app-in-app
ecosystems; (b) new understanding in security enforcement of
summarized 11 common security regulations; (c) new attack
surfaces and weaknesses found in sub-apps and host apps.
(d) new detection method of certain security weaknesses for
both host apps and sub-apps (old method in our previous
work only work for identity confusion); (e) new security
consequence analysis results for vulnerable mobile vendors,
sub-apps, and remote servers;

II. SECURITY REGULATION INVESTIGATION
ON APP-IN-APP

In this section, we present our security regulation investiga-
tion against existing app-in-app ecosystems. Our investigation
purpose includes (i) understanding the resource delegation
model of existing app-in-app ecosystems; and (ii) recovering
the security regulations for the protection of CPDR.

A. Understanding App-in-App
In this section, we analyze the top-nine most popular app-in-

app ecosystems (listed in Table I). We select these ecosystems
based on the following criteria. First, we chose super-apps and

device vendors with user bases exceeding 100 million, as they
generally demonstrate a higher level of refinement in design
and implementation. Second, the ecosystems have accessible
and detailed sub-app developer documentation, which can
help attract more sub-app developers to join their app-in-app
community. Third, we select one representative host app for
each app vendor, as multiple host apps from the same vendor
typically share the similar architectural design.

Our study unifies the architecture of app-in-app ecosystems
as well as CPDR across different parties (Figure 1), including
host app, sub-app, and third-party web content. In general,
a host app provides sub-app runtime with three major com-
ponents: (i) an embedded web browser, (ii) CPDR interfaces
provided by the host app, and (iii) web-to-mobile bridge.

First, the embedded browser instance (e.g., WebView5 for
Android and WKWebView [7] for iOS) provides an iso-
lated environment for a sub-app, which is written in HTML,
CSS and JavaScript. Such an embeded-browser instance often
includes a customized worker to load and execute sub-app
code downloaded from market. The sub-app code can further
load web content from third-party servers such as adver-
tisements and news articles, in an isolated render frame.
Second, host apps provide rich CPDR interfaces to access to
various system- and app-level resources (e.g., microphone,
bank card info). For example, WeChat provides 917 cus-
tomized interfaces, and sub-apps only need to import the
JavaScript SDK provided by WeChat to call and access
rich resources of WeChat. Third, the web-to-mobile bridge
connects sub-app code with the native Java code. While
details of the bridge vary among different host apps, a typical
design encapsulates native Java API invocations from the web
side into a message sent to the mobile side. For example,
in Android, app can expose a dispatch method registered
through addJavaScriptInterface. The mobile side
parses the received message, finds the corresponding APIs,
performs security checks, and allows the API invocations if
the check passes.

B. Modeling CPDR

In this section, we dive into the model of CPDR. We perform
reverse-engineering against the implementation and usage of
CPDR interfaces in the host apps and sub-apps. In particular,
we review the code of the nine host apps using decompilation
tool (i.e., JADX [8]), and explore the CPDR interfaces using
dynamic analysis. Our purpose is to understand the CPDR
sensitivity and lifecycle. The results are depicted in Figure 1
with red dashed lines, and details are described below.

1) Resource Sensitivity: First, host apps often delegate
system- and app-level resources to sub-app runtime (cate-
gorized in Table II). These resources can be divided into
two classes: (i) ability and (ii) data. In particular, abili-
ties allow sub-apps to access system services (e.g. camera),
which are granted to host app with corresponding permissions
(e.g. Manifest.permission.CAMERA). Furthermore, sub-apps
can transmit or access user sensitive data, including phone
numbers used in registration, health info, and even bank card
info. Second, some CPDR are delegated in channels that con-
nect sub-apps, web content, and remote servers. For example,

5Without loss of generality, we use WebView to refer to such embedded
web browsers in the paper.
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TABLE II
STATISTICS OF CPRDIS IN TOP 9 POPULAR APP-IN-APP ECOSYSTEMS

the CPDR interfaces “request” or “connect” allows sub-apps
to establish the HTTP request or connect a WebSocket with a
remote server; likewise, the “postMessage” interface provides
the channel for sub-apps to receive message from web content.

More importantly, we find there exists many CPDR inter-
faces that can be accessed but undocumented. We manually
sample 200 of these ‘hidden’ APIs and check the usage
of them. Our analysis shows that at least 80% of them,
i.e., 160 APIs, are privileged and should not be used by
any sub-apps. For example, a hidden API—named “rpc”—
can be used to access the host app’s server-side interfaces,
like manipulating user accounts. According to our study,
we believe these abilities are supposed to be only accessed
by the first-party or partner developers.

In comparison, all nine app-in-app ecosystems support
delegation of access to sensitive abilities and data, including
loading third-party web content, accessing hidden APIs, sys-
tem storage, network resources, and user phone numbers. Note
that different ecosystems may provide different name of CPDR
interface. On the other hand, some hidden APIs are unique
to individual ecosystems, such as the “rpc” API provided by
Alipay.

2) Delegation Chain: Real-world CPDR involves multiple
layers and can be cross-ecosystem. The delegation chain
among multiple parties is often quite long and complex,
involving several layers. These characteristics may pose new
security hazards.

First, the CPDR are frequently accessed from one layer
and subsequently passed across multiple layers, including
(i) system layer, (ii) host app layer, (iii) sub-app layer, and
(iv) cloud layer. Let us consider an example of the user login
process in Pagoda,6 which involves resource delegation among
the host app (WeChat), the sub-app (Pagoda), and its web
content (advertisements). Specifically, Pagoda has the ability
to use user’s phone number delegated from WeChat in the
login process. And then, it can re-delegate this resource to
dynamically-loaded web content for personalized advertising.
Note that, the phone number is encrypted by WeChat, thus
Pagoda needs delegate the encrypted data to its back-end
server for decryption, using secret keys assigned from WeChat.

Second, the delegation chain may span across different
ecosystems. That is, the sub-app server act as a link to facilitate
the flow of resources in different app-in-app ecosystems. For
instance, the purchase and payment info in Pagoda can be syn-
chronized among different ecosystems of WeChat, Alipay, and

6A fruit retailer with more than 4,000 stores in China, and it has developed
its own online shopping sub-app in WeChat and Alipay.

its own Pagoda mobile app. In this scenario, the payment infor-
mation, including the user address delegated from WeChat,
is also passed to the sub-app running in Alipay. Unfortunately,
the data isolation in Alipay is vulnerable and can be abused,
which could potentially result in a data leak to a malicious
attacker. Thus, the protections in different ecosystems should
be consistent and robust against the increasing complexity of
the delegation chain. However, our further security analysis
verifies these is quite difficult in practice, which inevitably
introduces significant security risks.

C. Unifying Security Regulations
After modeling CPDR, we perform a study on what common

security regulations (CSRs) should be satisfied by sub-apps
and host apps. As discussed above, the existing design and
implementation of CPDR is multi-layer and cross-ecosystem.
Furthermore, there lacks standard security practices, and many
real-world protections are often ad-hoc. Developer documen-
tations in different app-in-app ecosystems delineate distinct
security guidelines for the secure utilization of resources.

Therefore, we generalize and unify the security regulations
that should be conformed to in the app-in-app ecosystem.
Below, we present our methodology of extracting security
regulations. First, we analyze the security related descriptions
from developer documentations provided by host apps, which
indicate the secure usage of CPDR interfaces. These descrip-
tions are frequently emphasized as tips beneath each API
and contain directive phrases (such as “developer must” or
“one should not”). Second, we manually review the code and
explore the implementation of CPDR interfaces, which helps
uncover undocumented security enforcement in host apps.

As a result, we successfully extracted and unified 11 CSRs
from three aspects, including ability delegation control, data
isolation, and channel security (Table III). At the micro level,
the security regulations follow the least privilege principle.
It considers CPDR as protected objects in a zero-trust envi-
ronment, requiring permission and identity check for ability
delegation, storage isolation between different parties, and also
input validation. This fundamental principle ensures the CPDR
could not be read, modified, or accessed by unauthorized
parties. At the macro level, security regulations should be
consistent across the delegation chain. First, it indicates the
tighter or at least similar security regulations from traditional
OSes and browsers. This includes the permission scope, pro-
tocol security, and the same origin policies. Second, different
ecosystems with the similar delegation scenarios should be
unified and consistent. To achieve this, host apps often provide
cryptography protection on phone number, health data, and
transmission channels.

Our study concludes several important findings: (i) Collabo-
rative efforts of both the host app, sub-app, and remote servers
are necessary. That is, a robust implementation of security
enforcement are required in host apps, and secure usage of
CPDR should be verified in sub-apps. (ii) Customization
of security enforcement varies in different ecosystems. For
example, host apps often implement different identity checks
to secure CPDR interfaces. There exist two types of identity.
One is a domain name as part of web origin, and the other is a
sub-app ID (or called AppID for short) assigned by a host app.
(iii) Incomplete security regulations are adopted in existing
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TABLE III
THE SURVEY RESULTS OF COMMON SECURITY REGULATIONS

app-in-app ecosystems. As a comparison, Alipay involves the
most security regulations; in contrast, Huawei and Xiaomi
lacks corresponding protection on identical CPDR. These char-
acteristics indicate existing protection of CPDR are vague and
fragile, and sensitive CPDR can be exposed to malicious parties
if any of the CSRs are violated by host apps or sub-apps.
As declared in TikTok [9], the violation of security regulations
can jeopardize the confidentiality, integrity, and availability of
app-in-app ecosystems.

III. SECURITY ANALYSIS: AN OVERVIEW

In this section, we present an overview of the security
threats in CPDR, including three novel attack vectors, adver-
sary scenarios, and attack roadmap.

A. Attack Vector Definition
The attack vectors appear when CSRs are violated during

the implementation and usage of CPDR interfaces in real-world
host apps and sub-apps. This is because the delegatee or
delegator of CPDR may be malicious or compromised in
the insecure delegation chain. Thus, according to the cate-
gories of CSRs, we propose three attack vectors: masquerade
attack (Section IV), data-driven attack (Section V), and chan-
nel hijacking (Section VI). The definitions are described as
follows∶
● Masquerade Attack. This attack lets unprivileged party

pretend to be privileged one, thus abusing privileged
abilities. In an app-in-app ecosystem, masquerade attack
happens because of a disobey of the least privilege
principle. For example, a privileged sub-app is tricked
into loading unprivileged web content, and host apps
only check the permission granted to this sub-app. Con-
sequently, the loaded unprivileged content finally obtains
the abilities of the privileged sub-app.

● Data-driven Attack. This attack manipulates data received
or stored by other parties, tampering with the code
logic. This type of attack typically involves exploiting
weaknesses in the data processing of sub-apps and data
storing components of host apps. Consequently, malicious
sub-apps or web content can exploit critical functionali-
ties of victim sub-apps and steal their sensitive data.

● Channel Hijacking. This kind of attack lets man-in-the-
middle attacker access data in cross-layer transmission

channels, thus compromising their integrity and confiden-
tiality. As a result, attackers can access rich sensitive data
and even manipulate sub-apps back-end servers.

B. Adversary Scenarios
In this section, we describe the adversary scenarios adopted

in the paper. We assume that the host apps and under-
lying mobile operating systems are benign. The attacker
is sophisticated with app reverse engineering, communica-
tion engineering (i.e., traffic analysis with mitmproxy [10]),
and even social engineering skills (i.e., sending malicious
deep-link to victim users). Specifically, we consider the
ecosystems are facing the following threat scenarios∶
● Inside Attacker. In this scenario, the attacker can launch

attack as a malicious party (i.e., sub-app, web content
from malicious server) in the app-in-app ecosystem. The
attacker can either upload a malicious sub-app to the
market or launch masquerade attack to load malicious
web content into a vulnerable sub-app. Note that if
either the host app or the sub-app violates R1, malicious
web content can be loaded into the sub-app runtime,
despite the runtime being designed to exclusively load
web content trusted by sub-apps.

● Outside Attacker. In this scenario, the attacker has
the ability to compromise resource delegation channels.
Specifically, the adversary in this scenario could be a
man-in-the-middle (MITM) server or malicious mobile
app installed on the victim’s phone. He can exploit OS
vulnerabilities [11] to access local files of host apps.

Note that the former scenario is considered more powerful
than the latter one. This is because the inside attack (i) is
more deceptive due to the simplified launch condition through
phishing deep links and reuse of the runtime of benign sub-
apps; (ii) can access to much powerful functionalities, such
as payment and back-end service of host apps, leading to
significant security breaches and damage.

C. Attack Road-Map
This section presents the attack roadmap detailing how three

attack vectors operate in two adversary scenarios.
As an inside attacker, who can (a) start with injecting

malicious web code into the sub-app layer. Specifically, a mali-
cious deep link such as scheme://encoded(sub-appID,path,
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malicious-url) is crafted by attacker, and clicked by victim
user. Host app recognizes the deep link for loading the sub-app
with sub-appID and page path, which receives a URL as
input to load web content in its runtime. With the inadequate
allowlist check, malicious web content can be easily loaded for
successor attacks. (b) The injected code seeks to expand the
scope of attacks via API manipulation. That is, in masquerade
attack, attacker breaks the host apps’ permission and identity
check to access privileged abilities. Besides, in data-driven
attack, the attacker accesses sensitive data of other sub-apps
in the insecure data isolation. Moreover, to achieve API manip-
ulation, the attacker can manipulate other privileged sub-apps
that lack input validation by simply crafting malicious input
and sending it to them.

Alternatively, the attacker can initiate channel hijacking
from outside the app-in-app ecosystem. If the delegation
of sensitive data lacks encryption protection, the delegation
channel can be tampered with, allowing the attacker to pilfer
sensitive data such as secret keys, tokens, and phone numbers.

IV. MASQUERADE ATTACK: ABILITY EXPOSURE

This section details our first attack vector, referred to as
masquerade attack, wherein remote attackers upload mali-
cious sub-apps or web content posing as trusted entities,
consequently escalating their privileges to critical APIs. The
root cause of such an attack lies in the complexity of the
CPDR delegation model, which complicates the identification
of trusted entities when the host app delegates critical function-
alities to sub-apps or web content. In brief, the vulnerabilities
may happen when host apps check the identity of CPDR
interface caller (AppID and domain name), or re-delegate OS
permission to sub-apps and web content.

A. App ID Confusion

An AppID confusion occurs when the malicious web
content is loaded into a sub-app (i.e., violate R1). Thus,
AppID confusion opens the attack surface for inside attackers.
Most importantly, the loaded malicious code can unexpectedly
access CPDR interfaces for further exploits, i.e., using a
privileged AppID to invoke a privileged CPDR interface, which
can confuse the host app’s identity checks. Note that the reason
that we call it AppID confusion is that the malicious domain
has the correct AppID, but the domain itself is malicious.
In practice, we find three cases of such AppID confusion.

1) Type 1: Flawed URL allowlist matching: This flaw is that
the URL allowlist used for loading is flawed, thus being able to
allow potential malicious URLs to load. The main reason is the
lack of coordination and proper documents between the host
app and sub-apps. Specifically, the URL allowlist checking
algorithm is provided by the host app, but the allowlist is
provided by the sub-app. Therefore, a misunderstanding of the
check algorithm often leads to flaws and we list two scenarios
here.
● endswith being misunderstood as strict matching. In

this scenario, the host app provides endswith as the
matching algorithm, but the sub-app developer thinks it
is a strict matching. Therefore, when the sub-app uses
benign.com in the allowlist, an adversary can bypass the
check using a domain like maliciousbenign.com.

● Regular expression (regex) being misunderstood as strict
matching. In this scenario, the host app uses regex in
the matching, but the sub-app developer still thinks it
is a strict matching. Therefore, when the sub-app uses
benign.a.com, the dot matches an arbitrary character. That
is, an adversary can bypass the check using a domain like
benignXa.com.

2) Type 2: Flawed URL parsing: This flaw is that host
apps have logic errors in parsing URLs and extracting
web domains. Specifically, we find two types of parsing
errors that exist in studied host apps. The first is caused
in many cases that the host app does not correctly recog-
nize the username and password fields of the URL. Take
https://benign.com:x@malicious.com as an example. A logic
error is to extract benign.com as the domain name, rather than
malicious.com. The second is that host app does not forbid
JavaScript as a protocol. Thus, an attacker can use the URL
javascript://payloads to exploit the URL parsing, resulting in
code injection attacks.

3) Type 3: Missing URL checks: This flaw means the host
apps do not check web domains when a sub-app loads a third-
party URL into either an iframe or a top frame. Therefore,
an adversary can either embed a malicious URL as an adver-
tisement or trick the top frame into visiting a malicious URL
and then access privileged APIs, such as reading user contacts.

Take-aways of §IV-A

Party Responsibility: The host app implements
flawed methods for allowlist matching and URL
parsing. The sub-apps mistakenly configure allowed
domain.

Consequence: Injection of malicious web content.

B. Domain Name Confusion

A domain name confusion is that the web domain that
invokes a privileged API from web content is different from
the domain that a host app obtains and checks for identity,
disobeying the R2. One notable reason for such confusion
is that web content (loaded in sub-apps) is highly flexible
and potentially changes every moment, e.g., web navigation
and even sub-app redirection. Host apps depend on WebView
callbacks to acquire the identity of the caller. Nevertheless,
these callbacks do not provide sufficient accuracy to obtain
the correct identities, especially when a change happens in
the sub-app layer. Specifically, we classify domain name con-
fusions into two types: timing-based (due to race conditions)
and frame-based (due to the existence of multiple domains).
We now describe the details.

1) Type 1: Timing-Based Confusion: The first type—called
timing-based—is because of a race condition between different
threads of WebView and host app from a high level. That is,
as a simplification of the race condition, when a WebView
thread invokes a privileged API and passes the control to a host
app thread, the identity is from say malicious.com; but when
the host app thread checks the identity, the identity changes
to say privileged.com due to redirection, leading to confusion.
Figure 2 shows an exploitation of such an attack on Microsoft
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Fig. 2. Example for exploiting domain name confusion. The getAuthToken
is a privileged API of Microsoft Teams.

Teams. This figure exhibits a race condition: although the
webpage is set to navigate to https://privileged.com, and so
is the domain name, the code is still executed under the old
context before the new page is loaded. The return value is
accessed by the old page controlled by the adversary during
the small interval.

2) Type 2: Frame-Based Confusion: The second type—
called frame-based—is that an iframe acts on behalf of the
top frame’s identity. The reason is that many WebView’s APIs
and callback functions only return the top frame’s URL when
multiple sub-frames are embedded as part of a top frame.
Then, no matter what identity checks are conducted by the host
app and how such checks are performed, the host app can only
obtain the top frame’s identity if such APIs and callbacks are
used. That is an advertisement from malicious.com embedded
as an iframe of privileged.com can act on behalf of the latter.

Table IV shows the confusing WebView event handlers in
existing host apps. This list includes commonly used ones like
onPageStarted, onPageFinished, and getUrl.

Take-aways of IV-B

Party Responsibility: The host app uses inadequate
WebView event handlers to obtain identity.

Consequence: Privilege escalation of critical abilities.

C. Permission Inconsistency

Permission inconsistency happens when host apps fail
to restrict unauthorized sub-apps or web content to access
re-delegate sensitive system resources protected by OS per-
mission (i.e., violate R3). We list two scenarios here.
● Permission Scope. In this scenario, the permissions

designed by OS developers for protecting sensitive sys-
tem resources are always updated ahead of host apps.
To this end, host app developers cannot obtain a pre-
cise permission mapping for used system resources.
Note that, the host apps are often granted with critical
system permissions due to their close partnership with
the operating system providers. This results in both
temporal gaps and missing scope in defining permis-
sions. For example, after the Android Q version, it was
announced that access to the clipboard requires signature-
level permission [12]. However, all of the host apps
including Alipay, WeChat, Baidu, Xiaomi, and Huawei
do not provide a consistent permission scope for the
CPDR interfaces with access to clipboard. For another

example, host apps like Alipay and WeChat often pro-
vide different CPDR interfaces (e.g., previewImage
and saveImage) with access to the same system API
(i.e., getExternalStorageDirectory), but only
saveImage has the corresponding permission protec-
tion. In our observation, the previewImage can also access
files in the external storage directory that stores sensitive
photos of users, exposing them to malicious attackers.

● Enforcement Scope. In this scenario, host app developers
only enforce the permission check for the sub-appID.
That is, if the sub-app has already been granted with the
permission for accessing system microphone, any loaded
web content in the sub-app can obtain such abilities
without permission request to users. Thus, malicious
content can easily abuse the delegated system’s abilities.

As a result, both the malicious sub-app and malicious web
content can easily obtain unauthorized abilities and abuse
system resources.

Take-aways of IV-C

Party Responsibility: The host app implements
inconsistent permission check in delegating system
resources to sub-apps and web content.

Consequence: System permission re-delegation.

V. DATA-DRIVEN ATTACK: DATA MANIPULATION

This section details our second attack vector, known as
data-driven attack, in which sub-applications fail to validate
requests received from other entities, or data storage is inad-
equately isolated.

A. Weak Storage Isolation
As detailed in Table III, the widely used storage should be

protected following R4-6. However, none of these 9 studied
app-in-app ecosystems implement these regulations compre-
hensively.

1) Sub-App Storage: By design, the storage of sub-apps
is naturally isolated from that of web content. However,
this isolation may be compromised due to the existence
of covert channels. Specifically, Baidu provides an CPDR
interface called setData, which exposes the storage of
current sub-app runtime to its web content, violating R5. It is
important to note that sub-apps often load diverse web content
from third-party servers (e.g., advertisement), and these web
content can potentially access and share sensitive data stored
by the sub-app, incurring data theft.

2) Web Content Storage: Although the concept of SOP
has already been introduced and enforced by web browsers,
we find existing host apps may fail to protect their local
storage when delegated through CPDR interfaces, thereby
violating R6. Specifically, Alipay provides setStorage and
getStorage for web content to easily save and read its
own data, including user tokens, nicknames, and cookies.
However, we find that Alipay only enforces a coarse-grained
isolation among different domains. That is, the web content
of malicious.com can access the stored sensitive data of
benign.com, leading to data leakage.
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TABLE IV
THE DOMAIN NAME CONFUSION IN USING WEBVIEW’S EVENT HANDLERS TO OBTAIN IDENTITY INFORMATION.

WE MEASURE THEM AT TIME AND FRAME DIMENSIONS

Take-aways of V-A

Party Responsibility: The host app provides
coarse-grained storage isolation.

Consequence: Data leakage.

B. Missing Input Validation
With strict storage isolation protection, sub-apps become

difficult to share data among sub-apps and web content.
Thus, host apps provide CPDR interfaces postMessage and
navigateToMiniprogram to satisfy such data delegation
needs. One often relies on the input data from other parties
to complete their service tasks. For example, the shopping
sub-app A can send the payment order to finance sub-app B to
complete the payment process. However, this requires sub-app
to carefully check the communication target when delivering
sensitive resources. In this scenario, we assume web content
and other sub-apps can be malicious.

1) PostMessage: This flaw is that a sub-app does not
validate messages sent from its web content via the CPDR
interface postMessage, violating R7. Sub-apps often handle
the messages that are sent from loaded web content, and
delegate the resources they are obsessed to web content. For
example, the web content can send message to sub-app to
achieve user login and retrieve the login token to present fur-
ther VIP services. Without validations on the sender, malicious
web content can easily craft the request with malicious input
to launch data-driven attack, abusing the data and abilities of
the vulnerable sub-app.

2) Sub-App Navigator: This flaw is that a sub-app does
not validate input data from other sub-apps via CPDR interface
called navigateToMiniprogram, violating R7 too. Using
this API, one can easily delegate tasks (e.g., payment and
face recognition) to other sub-apps by sending query data to
and receiving task results from other sub-apps. However, it is
important for the receiver sub-app to check the sender’s appID;
otherwise, a malicious sub-app can launch data-driven attack
to manipulate a vulnerable sub-app to abuse its ability or steal
sensitive data.

Take-aways of V-B

Party Responsibility: The sub app fails to check the
identity of message sender.

Consequence: Data leakage, ability re-delegation.

VI. CHANNEL HIJACKING: CRYPTOGRAPHY FAILURES

This section details our third attack vector, wherein an out-
side attacker can tamper with the resource delegation channels
including network and storage. The root cause lies in the
cryptography failure of sub-apps and host apps on the above
two channels. This attack vector can bring extensive threats
to the service of sub-apps, such as manipulating sub-app web
servers.

A. Storage Hijacking
Note that many security researchers have highlighted secu-

rity issues of storage without encryption [13], [14]. They
advocate for app developers to refrain from storing sensitive
data, such as passwords, tokens, and user information, in bare
storage. However, we still find that seven host apps do not
provide encryption to local storage files used by sub-apps or
web content, violating R9. And sub-apps are more likely to
trust the storage channel, assuming it possesses the same level
of security as their host app, suffering storage hijacking attack.
A sophisticated malicious app can exploit Android privilege
escalation vulnerabilities to gain access to these storage files.
Such attackers can steal or modify sensitive data, resulting in
data leakage or tampering with the sub-app’s services.

Take-aways of VI-A

Party Responsibility: The host app provides no stor-
age file encryption.

Consequence: Data leakage.

B. Cloud Traffic Hijacking
1) Insecure Protocol: Although all host apps allow

sub-apps to use network channels (i.e., Request), we find
that seven of them do not provide strict secure proto-
col enforcement (i.e., SSL), violating R8. That is, sub-app
developers that lack security awareness still use insecure
communication protocols, such as http:// and ws:// (for Web-
Socket), and can suffer from MITM atttack. Note that, Line
and Microsoft Teams do not provide such customized inter-
faces, but their sub-apps can use JavaScript request methods
(e.g., XMLHttpRequest) to communicate with a remote
server. However, their developer documentation does not state
the corresponding security regulation; thus, their sub-apps may
also suffer from the attack. To exploit this vulnerability, one
MITM attacker can hijack the network traffic, and modify
or steal sensitive data including user phone numbers for
registration, user tokens, and even payment orders.
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2) Phone Number in PlainText: Sub-apps often assume the
integrity of delegated user phone numbers is guaranteed, they
often rely on it to complete the user login and authentication
process. However, we find Huawei and Xiaomi delegate the
phone number without encryption, violating R10. To exploit
this, the MITM attacker can easily modify the phone number
used for user verification through a network monitor or Xposed
hook, logging in to any victim’s account.

3) Encryption Key Leakage: The delegated sensitive user
data are often critical for backend server logic, such as user
login and payment processes. To prevent integrity breaches,
the delegated data must remain encrypted in the front end and
be processed in sub-app’s server. However, the ambiguous and
ad-hoc security descriptions provided by host app developer
may mislead sub-apps into attempting to decrypt them on the
front end. As a consequence, this could lead to the leakage of
secret keys to malicious attackers, thereby violating R11. Note
that there are usually two ways to leak the secret key. First, the
sub-app may embed its private keys in the sub-app code, which
can be easily extracted. Second, the sub-app may dynamically
send the key from its server-side and execute the decryption
in the front end. With leaked secret keys, the attacker can gain
unauthorized access to back-end servers of sub-app developers
or generate fake signatures to steal sensitive user data.

Take-aways of VI-B

Party Responsibility: The host app failes to encrypt
the delegated user data. The sub app uses insecure
communication protocol and does not follow secure
cryptography procedure.

Consequence: Data leakage.

VII. MEASUREMENT: PREVALENCE AND CONSEQUENCE

In this section, we conduct a measurement study on the
nine most popular app-in-app ecosystems in Table I to identify
violations of CSRs in real-world host apps and sub-apps.

A. Overall Methodology

Thoroughly confirming the aforementioned security con-
cerns is a challenging task due to the semantic gap between the
implementation of different host apps. This discrepancy makes
it costly and time-consuming to identify vulnerabilities across
various app-in-app ecosystems. Our proposed methodology
operates at the program behavior level and includes a set of
formalized testing templates or security rules. Based on the
summarized CSRs (detailed in Section II-C), we design a set
of violation samples to test the host app implementation of
CPDR interfaces. Note that, all of the tests are constructed in
JavaScript language which can be deployed across ecosystems
with the help of uni-app [15]. The uni-app can automatically
convert our penetration samples to suit the different API
supported by respective ecosystems. In cases where the host
app lacks support for the tested API, we consider it is non-
vulnerable. Simultaneously, we carry out differential analysis
to identify evidence of a violation of security rules when
sub-apps and web content are utilizing CPDR interfaces.

B. Penetration Test Configuration

1) Identity Check: Our experiment evaluates whether an
unprivileged identity can access privileged abilities. We con-
sider the penetration test in two scenarios: (i) a sub-app
without privileged AppID; and (ii) web content without privi-
leged domain. Our penetration test samples check whether an
adversary can ask a host app to load any malicious domain
in a sub-app. And whether the domain can further exploit
privileged CPDR interfaces.
● Sample1. Specifically, we create a sub-app and set an

allowlist for benign domains. Then, we generate a variety
of URLs by mutating several initial seeds. Next, we ran-
domly select URLs that cannot match the allowlist to test
the sub-app. During the test, we hijack the network traffic
and return the same webpage we crafted for invoking
privileged CPDR interfaces when requesting these URLs.
Thus, if any of these URLs are successfully loaded
and the JavaScript executed, an AppID confusion is
confirmed.

● Sample2. To validate a domain name confusion, we create
a malicious webpage that invokes privileged runtime APIs
with an endless loop, and let the webpage trigger the event
handlers, e.g., jumping to a privileged domain. Next,
if any of the privileged APIs execute successfully, the
host app is vulnerable to domain name confusion.

2) Permission: Our experiment evaluates whether a sub-app
without any permission can access a permission-protected
system resources. Although previous work [16] uses the
dynamic testing technique to find permission inconsistency
for common Android permissions, they ignore the clipboard
permission granted by user dynamically, and network per-
mission may be required under different network connection
situations. Thus, our penetration test considers all of these
situations to better understand the permission inconsistency in
different ecosystems. Specifically, our penetration test sample
includes invoking getClipBoard, setClipBoard, and
other system APIs such as files management, camera usage,
and network request. According to the consistency II-C, host
apps should create a pop-up window to alert the user that
one sub-app is requiring permission when calling these CPDR
interfaces. Based on this, we can identify permission incon-
sistencies by monitoring the presence of consistent permission
pop-ups after running test samples.

3) Storage Isolation: Our experiments evaluate whether the
implementation of storage protection meets all of the three
security regulations (i.e., R4-R6). Host apps must carefully
isolate the storage from different entities (i.e., sub-apps, users,
and web content), and prevent malicious parties from abusing
them. Specifically, we configure a group of penetration sam-
ples within our own sub-apps.
● Sample1. The sub-app A invokes setStorage to add

a key-value pair data to the storage, i.e., <“testkey”,
“sub-appA”>. The web content invokes getStorage
with key = “testkey”. If the return result is “sub-app”,
it indicates a violation of R5 on read operation.

● Sample2. The web content a.com invokes setStorage
with key = “testkey”, value = “a.com”, and sub-app
invokes getStorage with key=“testkey”. If the return
result is “a.com”, it indicates a violation of R5 on write
operation.
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● Sample3. The web content b.com invokes getStorage
with key “key”. If the return result is “a.com”, it indicates
a violation of R6.

● Sample4. Let another sub-app B invokes getStorage
with key = “testkey”. If the return result is “sub-appA”,
it indicates a violation of R4.

4) Encryption: Our experiments evaluate whether the
encryption of storage files and delegated user data meet
security regulations following R9 and R10 individually.
For storage files, we reuse the test samples from storage
isolation and then analyze whether the storage files are
encrypted, which indicates the violation of R9. For user data
delegation, our penetration test samples invoke the CPDR inter-
faces including getPhoneNumber, getUserProfile,
and getRunData. Then we use MITM proxy server to check
whether the delegated data is encrypted. If the data is not
encrypted, it indicates a violation of R10.

C. Differential Analysis Configuration
1) Input Validation: To find a sub-app that violates R7,

we perform static taint analysis from cross-party communi-
cation event handler (i.e., onMessage for postMessage
and onLoad for navigateToMiniprogram). Our static
analysis is implemented based on JS-WALA [17], which pro-
vides an intermediate language presentation of the JavaScript
code. To this end, we can build the control-flow graph and
data-flow graph using its functionality. Specifically, we model
these event handlers and identify their parameters that contain
the cross-party delegated data as tainted. Then we build the
data-flow graph for these tainted data and analyze whether
there are data processed by delegatee sub-app. We identify
such data delegation as vulnerable when the delegatee sub-app
lacks check of the sender’s identity (e.g., AppID and domain
name).

2) Protocol Usage: We analyze the network channel secu-
rity from the usage of communication interfaces in sub-apps.
In our analysis, we first identify the Request and Con-
nect_WebSocket APIs as sinks, and launch backward data-flow
analysis on the target server address variable (modeled man-
ually) to find the source string value that propagate to the
variable. Specifically, we analyze the object assignment state-
ment to check whether a constant String value is assigned
to the tainted variable. If we find a constant String value,
we further try to parse the String as URI and extract its
protocol. If a sub-app uses “http” or “ws” as communication
protocol, it is vulnerable to channel hijacking.

3) Key Leakage: Our differential analysis tries to find the
evidence on the sub-app’s code that has insecure front-end
decryption, which violates R11. Previous work [18] measures
the master key leakage in sub-apps of WeChat, however, their
work is limited to only detect the first type of key leakage.
And they only focus on the secret keys that are mainly used
in the communication between the sub-app and host apps,
thus ignores other cross-party communications such as sub-app
to its backend server. Our differential analysis considers a
generic key leakage problem. To identify the embedded key,
we utilize the entropy-based method like previous work [19]
to find secrets that should not be present in any sub-app
code. We calculate the information entropy of the secret
keys provided by host apps, and choose 1.5 as the threshold.

TABLE V
OVERALL RESULTS OF HOST APPS. ✔ MEANS IT HAS VULNERABLE

SECURITY ENFORCEMENT, AND ✘ HAS NOT. - MEANS THE HOST APP
DOES NOT HAVE THIS TYPE OF SECURITY ENFORCEMENT

If one string has entropy exceeding 1.5, we consider it as a
development key leakage. To identify the dynamically leaked
keys, we can identify whether there are common decryption
algorithms usage for private user data such as phone number,
user profile, and user motion data. Specifically, we use the
function names of common encryption and decryption algo-
rithms (i.e., RSA and AES algorithms) provided in the sub-app
developer documentation as matching features.

D. Sub-App Collection
Now we describe how we collect the source code of sub-

apps. Each app-in-app ecosystem has its customized sub-app
market, thus we implement our sub-app crawler based on
MiniCrawler [20] for individual ecosystems. While sub-apps
from WeChat are encrypted, we can use decryption tool [21]
to recover their source code. To this end, we collect 202,273
sub-apps, including 57,514 from WeChat, 93,128 from Alipay,
49,630 from Baidu, 29 from Kuaishou, 969 from Huawei, and
1,032 from Xiaomi. Note that, TikTok, Line, and Teams have
anti-crawler protection; thus, we fail to analyze their sub-apps.
But we still can perform security tests on these host apps.

VIII. MEASUREMENT RESULTS

In this section, we describe our empirical study results
in terms of analyzing the prevalence and consequence of
the aforementioned three attack vectors in real-world app-in-
app ecosystems. We also give a few real-world case studies
and proof-of-concept exploitation to demonstrate the attack
scenarios at the end.

A. Vulnerability Prevalence
1) Host Apps’ Pitfalls: Table V shows that all of the studied

ecosystems are vulnerable to at least one type of attack despite
the diversity in security enforcement implemented in app-in-
app ecosystems. Here are the breakdowns. Nine app-in-app
ecosystems suffer from masquerade attacks. Four app-in-app
ecosystems suffer from data-driven attacks. And seven app-in-
app ecosystems suffer from channel hijacking.

2) Sub-Apps’ Pitfalls: Table VI shows the prevalence of
attack surface. The ranking is top-down: For masquerade
attack, around 27.5% of privileged sub-apps have AppID con-
fusion. Thus they are all controllable under the malicious deep
links. For data-driven attack, nine host apps do not provide a
fine-grained identity for input validation, thus affecting all sub-
apps. Specifically, 27.3% sub-apps are exploitable from other
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TABLE VI
OVERALL RESULTS OF SUB-APPS. ✔ SUB-APPS ARE ALL VULNERABLE

DUE TO HOST APPS LACK OF SECURITY ENFORCEMENT

sub-apps and 18.1% from web content. Thus they open a vast
attack surface for app-in-app ecosystems. We randomly select
100 sub-apps from each app-in-app ecosystem and further
validate around 4.5% of sub-apps concatenate sensitive data to
URLs that can be manipulated by malicious attackers. These
sensitive data often include user login tokens and address info.
For channel hijacking, 22%-86.21% sub-apps still use insecure
protocols in their communication with remote servers. And at
most 10.46% sub-apps leak the sensitive keys to the front-end.

B. Vulnerability Consequence
We find the vulnerability consequences can be vast and far-

reaching, by combining the PoCs in the aforementioned three
attack vectors, leading to ability re-delegation, data leakage,
and even privilege escalation. More details are presented
below:
● Ability Re-delegation. The permission check inconsis-

tency happens between OS and host app, or between
sub-app and web content. Moreover, when benign web
content applies for permission and the user grants it, the
host app will give this permission to the sub-app, but not
the domain. Then, any other domain, e.g., malicious.com,
in this sub-app can use this permission.

● Data Leakage. It is the disclosure of sensitive information
to an adversary. Utilizing clustering analysis, we cat-
egorize the leaked data. The result shows a disaster,
which includes leakage of PII data (around 64%) such
as user tokens, addresses, and device information. Other
highly ranked sensitive data include session information
and secret keys. We manually analyze the leaked secret
keys, and find there are diversified key abilities, including
encrypt and decrypt phone numbers and access third-party
cloud service APIs (e.g., manipulate remote storage).

● Privilege Escalation. We manually inspect whether mali-
cious web content can access privileged APIs after
successfully confusing the host app and disguising itself
as a privileged identity. The consequence includes manip-
ulating host app’s backend server via a privileged API
called “rpc”, exposing huge security risks.

C. Case Studies
1) Example [WeChat] One-click Privilege Escalation: Now

we describe a motivating example of a host app WeChat
and its sub-app Pingduoduo7 to illustrate identity confusion

7Pingduoduo is a popular online customer-to-manufacturer market manag-
ing over 8.6 million virtual shops.

Fig. 3. One-click attack example for a remote attacker to exploit WeChat
app-in-app ecosystem.

vulnerability, which eventually leads to privilege escalation
attacks, such as arbitrary APK download and installation on
the Android platform.

As shown in Figure 3, the end-to-end attack has 12 detailed
steps that can be grouped into three major phases: (i) injecting
malicious code to Pingduoduo’s runtime, (ii) obtaining privi-
lege capabilities, and (iii) downloading malicious apps.

First, a web attacker can send malicious deep link such as
weixin://encoded(pingduoduo-appID, path, malicious-url) to
victim. When the link is clicked by the user, Pingduoduo will
be loaded into the customized worker, and send the request for
loading the URL embedded in the malicious deep link. This
request is hooked by WeChat, which will further check the
domain allowlist on its server-side in Step(1c). However, Ping-
duoduo is affected by flawed URL parsing IV-A; therefore,
in Step (1d), the WeChat server grants permission to load this
URL. To this end, malicious.com is loaded into Pingduoduo’s
WeView instance. Second, up to now, the malicious web
content can only invoke unprivileged APIs because WeChat
performs capability-based access control. In Pingduoduo, such
capability is delegated from its server side to the sub-app
through network channel, and protected by an authorization
key. However, the Pingduoduo leaks the secret key to the sub-
app, which can be obtained by malicious attacker, and finally
abused for obtaining the privileged capability (Step 2c). This
finally leads to privilege escalation for sensitive APIs. For
example, addDownloadTask(), a hidden, undocumented
API, which can download and install any APKs on the Android
platform.

2) Example [TikTok] Bypassing Security Patches with an
Error URL: This example is the AppID and domain name
confusion of TikTok, a popular social app with about 18 billion
downloads. The AppID confusion is from the matching of
URLs using endswith. Then, the domain name confusion
is from the check implemented on customized WebView
being vulnerable to the race condition of onPageStarted.
We reported the vulnerability to TikTok, which then deployed
a patch to update its chromium kernel to the latest. However,
the patch is still vulnerable because we can utilize an error
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TABLE VII
THE TRIGGER CONDITIONS OF WEBVIEW’S ERROR CODES

URL, delay the webpage rendering, and enlarge the time
window for the race condition. Note that we further analyzed
all WebView’s error codes, and found four of them can be
easily triggered by attackers as shown in Table VII.

Here are the detailed steps to exploit TikTok’s domain name
confusion. First, attackers create a malicious webpage, which
abuses benign.com’s identity by executing the JavaScript
“window.location.href = htttp://maliciousbenign.com”. Since
“htttp” is not a supported scheme, this URL will trigger the
race condition of onPageStarted.

3) Example [HuoLaLa] Bucket Effect: This example illus-
trates the amplified channel hijacking in HuoLaLa, a cargo
transport service provider with more than 16 million monthly
active users. The channel hijacking is from the plaintext phone
number delegated from Huawei to HuoLaLa. Specifically, the
phone number is supposed to be authenticated as belonging to
the real phone user and used by HuoLaLa for password-free
user login. However, the MITM attacker can modify the
delegated phone number, breaking the authenticity assumption.
If the exploit is considered to occur in Huawei’s app-in-app
ecosystem, our attacker can achieve any account login in
HuoLaLa’s sub-app, and get the user token from the response.
Note that, the above token can be used to log in to the same
user account in HuoLaLa’s mobile app, even though its app
version has a more secure phone number encryption. To this
end, the malicious attacker can replace the token in app’s
login procedure, and achieve the mobile account hijacking.
Attackers can leverage the bucket effect to further access much
private user information that does not appear in the sub-app
version, including the user’s car refueling bill, home address,
and even the lending business. This example illustrates that
the security of service providers is highly constrained by the
bucket effect in app-in-app ecosystems. Indeed, the bucket
effect will bring great damage to the data and abilities that
are delegated in app-in-app ecosystems.

Root Cause: With a deeper analysis of the root cause
of the bucket effect, we find that the sub-app server, acting
as a link, connects user privacy data from different app-in-
app ecosystems. Consequently, a privacy data breach on one
ecosystem can further impact the security measures of the
same sub-app on another ecosystem.

Prevalence: To understand the prevalence of bucket effect,
we manually sample 100 popular sub-apps and examine
their user login implementations across different ecosys-
tems, including Alipay, WeChat, Baidu, Huawei, and their
mobile apps. The results indicate that 84 sub-apps have
versions deployed on multiple ecosystems, with an average
of one sub-app deployed on three ecosystems. Among these,
we identify 17 cross-platform sub-apps where the login tokens
are shared, suggesting the potential presence of the bucket
effect.

IX. DISCUSSION

1) Lessons Learned: The most important lessons learned
from our research is that an appropriate security regulation
should adhere to the two principles, namely the least privilege
principle and delegation consistency. First, the identity defini-
tion of delegatee and delegator in the app-in-app ecosystem
needs to be atomic, providing clear coordination between
parties of host apps, sub-apps, and web content. Second, both
the host app, sub-apps and web content should enforce the
standard security checks for each delegated resource. It is
important to emphasize that neither party should place trust
in the other. Adopting the client-side trust model is advisable,
whereby each party involved in cross-party delegation is
regarded as untrusted.

Other than the involved parties should enforce proper secu-
rity regulations, the mitigation of security flaws will also
benefit from the cooperation with underlying infrastructure,
i.e., obtain a precise domain information provided by the Web-
View component. Draco [22] provides a good example of such
domain identity synchronization. Specifically, Draco modifies
the native code of WebView and supports JavaScript to send
the domain information from the render thread. We believe
that such a practice should be integrated into the mainstream
design of WebView.

2) Security Regulation Design: In this paper, we conduct
a detailed analysis of the implementation and enforcement of
security regulations on different app-in-app ecosystems. How-
ever, it is also worth discussing the adequacy of the design of
security regulations. Take security regulation R1 (i.e., web con-
tent domain allowlist) as an example, its security assumption
based on domain-based allowlist is coarse-grained, thereby
this mechanism may be unreliable in restricting untrusted web
content. We believe that this work can inspire further research
into the proper design of security regulations in app-in-app
ecosystem.

3) Automatic Security Analysis of Cross-Party Resource
Delegation: Similarly, different scenarios of cross-party
delegation security analysis have also been proposed, as exem-
plified in IoT scenario [23]. Specifically, Yuan et al. proposes
a semi-automatic way in identifying inconsistent authorization
in IoT device access using formal verification technique. How-
ever, due to the closed-source feature of studied ecosystem,
there is a lack of standards in security implementation, leading
to different implementations across similar ecosystems. To this
end, significant manual expertise is required to model the
security regulations for different ecosystems. Guided by the
two fundamental security principles of least privilege and
delegation consistency, it is possible to utilize various analysis
techniques to achieve the goal of security detection, such as
static analysis, penetration testing, and even using LLM in
program behavior abstraction and analysis. We anticipate that
substantial effort will continue to be devoted to this subject.

4) Ethics: We discuss the ethical issues of our study, includ-
ing vulnerability disclosure and experimental setups. First,
we have informed all nine host apps of their vulnerabilities.
Currently, eight host apps have confirmed their vulnerabilities.
Take Alipay, for an example. We had regular monthly meetings
with their developers for half a year. In the end, Alipay not
only fixed the vulnerability but also rewarded us $2,500 as
part of their bug bounty program. Second, all the attacks are
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tested on our own devices with our test accounts, which does
not harm sub-apps, host-apps, or any of their servers. Note
that, we reported the vulnerable sub-apps to the corresponding
host app developer because they are responsible for informing
these vulnerable sub-apps of rectification.

X. RELATED WORK

A. App-in-App Ecosystem
Recent studies reveal the model of app-in-app ecosystems,

and their various advantages in different aspects of social life,
including health, education, government, and marketing [24],
[25], [26], [27], [28], [29], [30], [31], [32]. Additionally, some
studies provide program analysis techniques by leveraging as
dynamic analysis [33], [34], and static analysis [35], [36].
In the domain of research on attacks and defense in app-in-app
ecosystems, a few pioneering studies [6], [16], [18], [37], [38]
have delved into the defense mechanisms and vulnerabilities
of these ecosystems. Specifically, Lu et al. [16] and Zhang
et al. [38] investigate the permission inconsistency problem,
and Zhang et al. [6] proposed the novel identity confusion
flaws in protecting runtime APIs. Wang et al. [39] developed
a tool to identify hidden APIs in app-in-app ecosystems, and
demonstrated the potential security risks being exposed to
third-party sub-apps. Zhang et al. [18] and Yang et al. [37]
measure the security prevalence of information leakage. As a
comparison, our paper has a different goal focusing on the
CPDR, implementation of security regulations, and their secu-
rity threats, which have not been thoroughly studied before.

B. WebView Security
WebView is becoming a widely-used component for loading

web content in mobile apps and has been studied by many
research works [40], [41], [42], [43], [44], [45], [46], [47],
[48], [49], [50]. For example, Jin et al. [40], Li et al. [41],
Wang et al. [42] show that attackers can inject malicious code
into victim apps by exploiting insecure app communication
channels (e.g., scheme and intent) in WebView-based hybrid
apps. Son et al. [43] analyze WebView-based advertisement
apps and find that malicious ads can hijack mobile apps. As a
comparison, our work focuses on how host apps and sub-apps
should protect the delegated resources.

Past works also study the race condition attacks in Web-
View. Lau et al. [44] present a semi-automated approach to
analyze the concurrency flows in the PhoneGap framework
and discover event-based race conditions of JavaScript APIs.
Another research work [45] also reports several race conditions
in WebView’s event handlers. As a comparison, our measure-
ment study reveals the security implications in real-world host
apps and sub-apps.

C. Mobile App Security Mechanism

Smalley and Craig [51] demonstrate the limitation of
UID-based Discretionary Access Control (DAC) and bring
much more complicated Mandatory Access control (MAC) to
the mobile system. Hernandez et al. [52] analyze the issues
of enforced security policies. We then describe web apps and
their connection with mobile systems. Prior works [53], [54],
[55], [56], [57], [58], [59] focus on the security issues among

multi-origin web pages. NoFrak [60] points out the importance
of protecting the web-to-mobile bridge. Then, Draco [22],
MobileIFC [61], WIREframe [62], and HybridGuard [63]
present frameworks to extend the same origin policy (SOP)
to protect web-to-mobile bridges in hybrid applications and
enforce fine-grained access control mechanisms. Moreover,
prior works [64], [65] discover additional flawed URL parsing
and matching examples in different scenarios, such as email
senders. As a comparison, app-in-app ecosystem often requires
more sophisticated security enforcement because it involves
more parties with sensitive resources, which is much more
complicated than mobile apps.

XI. CONCLUSION

In this paper, we unveil the critical security question
surrounding cross-party delegated resources in app-in-app
ecosystems. We identify 11 core security regulations within
host apps, yet their inconsistent implementation with sub-apps
leads to violations and vulnerabilities. By investigating var-
ious ecosystems, we propose three novel attack vectors,
demonstrating the widespread prevalence of security regulation
breaches. Our findings emphasize the urgency of consistent
security practices. Through responsible disclosure, we engage
with developers to remediate vulnerabilities, underscoring the
imperative of collaborative security efforts in the evolving app-
in-app landscape.
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