
Misdirection of Trust: Demystifying the Abuse of
Dedicated URL Shortening Service

Zhibo Zhang, Lei Zhang, Zhangyue Zhang, Geng Hong, Yuan Zhang, Min Yang
Fudan University

{zhibozhang19, zxl, ghong, yuanxzhang, m yang}@fudan.edu.cn, zhangyuezhang23@m.fudan.edu.cn

Abstract—Dedicated URL shortening services (DUSSs) are
designed to transform trusted long URLs into the shortened links.
Since DUSSs are widely used in famous corporations to better
serve their large number of users (especially mobile users), cyber
criminals attempt to exploit DUSS to transform their malicious
links and abuse the inherited implicit trust, which is defined
as Misdirection Attack in this paper. However, little effort has
been made to systematically understand such attacks. To fulfill
the research gap, we present the first systematic study of the
Misdirection Attack in abusing DUSS to demystify its attack
surface, exploitable scope, and security impacts in the real world.

Our study reveals that real-world DUSSs commonly rely on
custom URL checks, yet they exhibit unreliable security assump-
tions regarding web domains and lack adherence to security
standards. We design and implement a novel tool, Ditto1, for
empirically studying vulnerable DUSSs from a mobile perspec-
tive. Our large-scale study reveals that a quarter of the DUSSs
are susceptible to Misdirection Attack. More importantly, we find
that DUSSs hold implicit trust from both their users and domain-
based checkers, extending the consequences of the attack to
stealthy phishing and code injection on users’ mobile phones.
We have responsibly reported all of our findings to corporations
of the affected DUSS and helped them fix their vulnerabilities.

I. INTRODUCTION

Nowadays, to better attract mobile users, web service
providers often employ shortened links to facilitate con-
tent sharing and user tracking [1]. The shortened link is a
condensed version of a long and complex URL (Uniform
Resource Locator) link with memorable and manageable
features created by the URL shortening service (USS for
short). However, a shared USS (SUSS) like Bitly [2] often
becomes notorious for being used in spam and malware distri-
bution [3]. To this end, famous corporations prefer to develop
their dedicated USS (DUSS) to gain users’ trust and offer
greater user convenience while earning more benefits. The
DUSS often uses the brand domain name2 to host shortened
links; therefore, these links inherit a good reputation from
its corporation. Besides, the “dedicated” feature makes users
implicitly perceive that accessing DUSS-shortened links is

1Our source code is available at https://github.com/u270C/Ditto.git.
2A brand domain give users a strong psychological and visual implication

and indicate the relevance of the domain name to the corporation.

equivalent to accessing trustworthy web content. For example,
go.nasa.gov is a domain used by NASA’s DUSS to signal
users that clicking on its links will lead to NASA-related web
pages [4]. Moreover, eight leading corporations out of Fortune
top 10 also set up their DUSSs, including Walmart (walmrt.us),
Amazon (amzn.to), and Shell (go.shell.com).

Owing to its potential to “transform” a malicious domain
into a reputable one, DUSS has garnered significant attention
and preference among cyber attackers in past decades [5],
[6], [7]. For example, in 2012, Symantec reported [5] that
spammers abused the 1.usa.gov (a DUSS of the USA gov-
ernment) to host their spam websites, having misdirected 40
thousand victim users to visit in six days. In this paper, we
refer to this type of attack as a Misdirection Attack. The
security implications of Misdirection Attack are substantial
due to the transitivity of trust3[8], [9]. Namely, social network
users and domain-based checkers that trust DUSS-shortened
links can be tricked into loading malicious websites into
downstream software. First, scammers can abuse DUSS to
generate shortened links that redirect users to their phishing
websites to steal private information. Second, remote attackers
can also leverage DUSS-shortened links to deploy malicious
code to tamper with software integrity and confidentiality.

To the best of our knowledge, there is still a lack of thorough
understanding of Misdirection Attack, and no prior work has
studied them in the wild. On the one hand, prior works [10],
[11], [12], [13], [14] mainly focus on identifying and detecting
malicious shortened links, but essential problems, i.e., the root
cause, detection, and consequences of Misdirection Attacks,
have not been well studied. On the other hand, other prior
works focus on the abuse of dedicated web services, such as
cloud storage [15], [16] and web rehosting services [17], [18].
Thus, this paper focuses explicitly on dedicated USSs, the
crucial web service infrastructures for famous corporations.
These DUSSs set themselves apart from other USSs and web
services by their highly ranked domains and security design
that only serves trusted links. To fill this gap and conduct a
systematic study on the entire attack surface, detection, and
security impacts of Misdirection Attack in the real world, we
formulate three-phased research questions:

RQ1. What are the security design of DUSSs and their
potential attack surfaces?

3If A trust B, and B trust C, then A trusts C

Network and Distributed System Security (NDSS) Symposium 2025
23–28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.23927
www.ndss-symposium.org

https://github.com/u270C/Ditto.git

RQ2. How do we automatically detect whether existing DUSSs
are robust to the Misdirection Attack?

RQ3. What security implication does the Misdirection Attack
have on social network users and domain-based checkers?

Answering these questions is challenging due to the invisi-
ble, black-box, and customized implementation of DUSS. We
present three studies to address these questions respectively:

Understanding security design and attack surfaces. By
leveraging a top-down approach (see Section III), we locate 88
high-profile DUSSs exist on social media platforms. We fur-
ther examine their underlying infrastructure, including the use
of a deployment model and the adoption of security enforce-
ment. Our research indicates that existing DUSSs typically
support client applications (e.g., mobile apps) developed by
their corporations accessing link shortening services through
application programming interfaces (APIs) and implement
customized checks for URLs to be shortened, such as checking
whether the domain is in an allowlist. However, we find that
despite the adoption of security checks, the possibility of abus-
ing DUSS still remains, as these security checks are susceptible
to various vulnerabilities. The reasons are two-fold. First, the
lack of standardization in implementing URL checks can lead
to security vulnerabilities. Second, the domain-based allowlist
is unreliable because it mistakenly assumes that if the domain
server is trustworthy, the URL is also considered trustworthy.
Such an assumption overlooks other security attributes of a
URL, such as domain ownership transfer or code injection on
vulnerable websites. These weaknesses open loopholes in the
security checks.
Detecting vulnerable DUSSs in the wild. Driven by the above
security concerns, it is nontrivial to build an automated tool to
locate the link shortening APIs of the 88 DUSSs and test their
security in the wild. In this paper, we design and implement
a tool, Ditto, which focuses on the mobile apps developed
by these DUSS corporations (see Section IV). It faces unique
challenges in identifying customized link shortening APIs and
conducting black-box security assessment. Ditto has two
key insights. On the one hand, it identifies the link shortening
API by analyzing client-side Web API implementation logic,
which outlines its general functionality. On the other hand, by
simplifying all potential vulnerability-validation test cases and
optimizing the testing sequence based on their dependencies,
Ditto can avoid unnecessary tests and efficiently perform
vulnerability detection. To this end, Ditto reports 50 link
shortening APIs and finds that 22 can be abused by malicious
attackers. The vulnerable DUSS corporations are widely dis-
tributed, from telecom (e.g., China Unicom) and e-commerce
(e.g., Amazon) to news and media (e.g., Sina).

Security implications. To better understand the security
threats of Misdirection Attack, we perform a survey study
to analyze how they differ from traditional phishing tech-
niques and impact domain-based checkers. Specifically, the
compromised DUSS domain plays a critical role in users and
domain-based checkers adopted by software due to the trust
transitivity. That is, social network users or security checkers

such as mobile applinks, OAuth allowlist, and link warning
services can be deceived if they place excessive trust in the
compromised DUSS domain. To illustrate these implications,
we survey various security checkers based on domain allowlist
and verify them (see Section V). We emphasize that DUSSs
are more often used to serve mobile users, making mobile
device users the most significant victims of Misdirection
Attack. We also present several case studies to demonstrate
the security consequences of compromising these checkers,
including serious data leakage, code injection, and phishing.
We have responsibly reported our findings to all 22 vulnerable
DUSS corporations and received their acknowledgment.

Contributions. We summarize the contributions of this paper
as below:

• New understanding. We conduct the first systematic study
of the dedicated URL shortening services and uncover 88
high-profile DUSSs of real-world corporations, including
their security design and attack surface.

• Vulnerable DUSS detection. We present a tool, Ditto,
that can effectively and accurately discover DUSS with
vulnerable link shortening API in the wild. We report
all 22 vulnerable DUSSs to their developers and offer
actionable recommendations to help developers minimize
and mitigate the threat of Misdirection Attack.

• Various security implications. We perform a system-
atic study to illustrate the vast security implications of
Misdirection Attack, including phishing, and bypassing
downstream domain-based checker to abuse critical app
functions and cause privacy leakage. The attack can affect
millions of mobile and desktop users.

II. BACKGROUND

In this section, we present the definition of DUSS and a
motivating example to illustrate how a Misdirection Attack
happens. Then, we thoroughly discuss our threat model and
research scope.

A. Dedicated URL Shortening Service
A dedicated URL shortening service uses the brand

name (provided by the corporation) as the domain name
of shortened links. From a technical perspective, DUSS
receives a relatively long URL in the query and generates a
shortened link while maintaining the mapping relationship
in a database and redirecting visitors of the shortened
link to the original URL. The brand name is either an
abbreviation or a sub-domain name of the corporation,
which is easy for online users to recognize and remember.
Moreover, DUSS can track its customers by generating
individual shortened links and gain benefits from this. For
example, sellers on Amazon shopping use shortened links
(e.g., https://amzn.to/45TDYok) of their product URLs (e.g.,
https://www.aboutamazon.com/news/retail/......?utm source=
SOCIAL&utm medium=TWITTER&......), which contain
user tracking flags for different social media platforms (e.g.,
Twitter). Thus, Amazon sellers can collect the source of their
visitors to build more precise user profiles.

2

https://amzn.to/45TDYok
https://www.aboutamazon.com/news/retail/......?utm_source=SOCIAL&utm_medium=TWITTER&......
https://www.aboutamazon.com/news/retail/......?utm_source=SOCIAL&utm_medium=TWITTER&......

C
om

pr
om

is
e

D
U

SS

Scenario 2:
remote code

injection

(2a) Request with: https://10010.com.evil.com

Attacker Server

(3e-2) Steal critical information

(3a) Send malicious shortlink to victim user

Scenario 1:
phishing

(1a) Probe the link shortening API

G
at

he
r

In
te

lli
ge

nc
e

L
au

nc
h

St
ea

lth
y

A
tta

ck
s

(2c) Response get: https://u.10010.cn/shortlink

(3e-1) Collect important credentials

(3c-1) Load phishing page

Attacker Device DUSS Server

China Unicom App

(3c-2) Load malicious Javascript code

(3d-2) Invoke
customized API

(3b) Open shortlink in
China Unicom’s

WebView

applink
…

Victim Device

(2b) Security check
is flawed

Attacker Server

start

WebView

Apps Installed

WebView

(3d-1) Trick
user input

Fig. 1. Simplified motivating example for a remote attacker to exploit China
Unicom’s DUSS and launch phishing and code injection attacks.

Traditional SUSSs often use a shared domain name (e.g.,
bit.ly), but is notorious for being abused in cyber crimes [11],
[12], [14]. This is primarily due to the public nature of SUSS,
which brings uncertainty to the behind-the-back URLs. In stark
contrast, DUSS is designed with a strong focus on trustworthi-
ness, a key feature that sets it apart from SUSS. This emphasis
on trustworthiness requires significant efforts in the security
design of DUSS. To this end, the DUSS establishes its trust
through two crucial properties: (i) a reputable domain with a
high web rank and (ii) a strict policy of only serving trusted
URLs. Therefore, the security of DUSS is critical.

B. Misdirection Attack

1) Definition: A Misdirection Attack is a deceptive strat-
egy that misdirects security attention and reliance from an
untrusted entity to one perceived as trustworthy, leading to a
compromise. In DUSSs, their brand domains are often granted
with great reputation, thus being trusted by users in social
networks and developers who deploy domain-based checkers
in the applications or systems. However, if the landing web
pages are malicious, they can inherit the trust due to the
trust transitivity. To this end, a malicious attacker can exploit
the vulnerable DUSS and transform malicious URLs into
dedicated shortened links, abusing its trust.

2) Motivating Example: In this section, we illustrate Mis-
direction Attack by describing a motivating example of China

Unicom corporation4. This attack exploits China Unicom’s
vulnerable DUSS to shorten malicious URLs, misdirecting
its mobile app users to visit and load these malicious links.
This eventually leads to phishing and code injection attacks
on millions of users, abusing critical app functions such
as arbitrary APK download and installation on the Android
platform and theft of sensitive files from users’ mobile devices.

Let us describe the steps of the end-to-end attack, as shown
in Figure 1. This attack can be detailed in eight steps, divided
into three major phases: (i) gathering intelligence about DUSS
of China Unicom, (ii) compromising and abusing the DUSS
to transform malicious URLs into the shortened links, (iii)
launching stealthy attacks for phishing and code injection.

First, an attacker needs to identify the entry point to abuse
China Unicom’s DUSS, which is non-public and hidden. This
requires reverse engineering and network traffic analysis while
dynamically exploring China Unicom’s client-side applica-
tions. A detailed use case can be found in Appendix A.
The China Unicom mobile app [20] is the only one that can
generate shortened links with the domain name u.10010.cn
while sharing its advertising pages. As shown in Step (1a),
this sharing behavior indicates that a Web API is invoked to
access the DUSS. The API’s network traffic is encrypted using
TLS protocol. The request body contains a long URL (e.g.,
an advertisement), and a shortened link to the long URL is
returned in response. At this stage, the attacker has only gained
access to DUSS, but is not yet able to abuse it.

Second, let us examine the second phase of compromising
the vulnerable DUSS, which involves abusing the DUSS to
shorten malicious links hosted on the attacker’s server. In Step
(2a), the attacker modifies (see Appendix A) the Web API
traffic, setting a malicious long URL in the request body.
In Step (2b), the DUSS performs a security check on the
received URL. However, the check is flawed and leads to
compromise. Specifically, the DUSS checks if 10010.com is
in the URL host received for shortening. This ad-hoc check
can be bypassed with attacker-controlled domain names (e.g.,
10010.com.evil.com). Finally, Step (2c) successfully retrieves
a shortened malicious link from the response body.

Third, let us examine the third phase: launching stealthy
attacks on victim users via shortened links. The attack begins
with a tactic that tricks users into clicking the shortened link in
phishing SMS messages5 (Step 3a). For example, the attacker
mimics the daily award notice message of China Unicom [21],
prompting users to click the shortened link. Additionally, the
attacker can send the message through a fake base station [22],
[23], enhancing its deceptiveness. Interestingly, the China Uni-
com app registers u.10010.cn as a hyperlink (i.e., applink [24])
to Android system, directing users to a specific WebView (an
embedded browser) component within the app6 when they
click the shortened links (Step 3b). The stealthy attack then

4China Unicom is one of the largest communications companies in China
with more than 969 million users [19].

5Attackers can also use email and social platforms as alternatives.
6If the app is not installed, the mobile browser will load a web page

provided by China Unicom to help users download and install it.

3

divides into two parallel scenarios: phishing and code injection
into the victim’s mobile device.

In the phishing scenario, the malicious website is presented
within the China Unicom app (Step 3c-1), tricking users into
entering sensitive credentials such as bank card numbers and
passwords (Step 3d-1). Attackers can then stealthily collect
this information (Step 3e-1). It is difficult for users to identify
fake websites because the WebView component hides the
address bar and allows the website to customize its title.

In the parallel scenario, malicious JavaScript is injected into
China Unicom’s customized WebView runtime (Step 3c-2).
China Unicom adds rich custom Java APIs to the WebView
runtime via addJavascriptInterface [25]. Thus, the
attack can cause serious consequences, such as installing
malicious APK or stealing sensitive files from the victim’s
mobile device (Step 3d-2). For example, the uploadFile
API, which inherits the file access permissions granted to the
app, can be exploited by the attacker to transfer sensitive files
to their server, including account token files and photos from
the user’s gallery (Step 3e-2).

Bottom line. The most important fact is that the Misdirection
Attack happens due to vulnerable security checks in the DUSS.
Therefore, the key is to identify which DUSS implementations
have such weak security mechanisms.

3) Threat Model: Let us describe the threat model adopted
in this paper. We consider the attacker a remote web attacker
who exploits vulnerable DUSS to transform malicious URLs
into shortened links with implicit trust. In this context, the
attacker exploits the “link shortening service,” a functional
component supported by the vulnerable DUSS in the client-
side applications (e.g., websites, and mobile apps). We assume
the attacker has no specific privileges or access to the DUSS
server. Additionally, the shortened malicious URL may carry
phishing web content or malicious JavaScript code, damaging
the victim users. As victim users, they are either ordinary
online social media users or those using specific downstream
software affected by Misdirection Attack. The software in-
cludes client-side applications and web services that can visit
and load shortened links. For instance, mobile apps that use
DUSS to generate shortened links may also load these links.
These software may use a domain-based checker to decide
whether the URL can be loaded or visited; thus, they can be
bypassed by malicious shortened links due to trust transitivity.
More details on exploitation can be found in Section V.

C. Scope of Problem

Note that our research scope focuses on the DUSSs with
good reputations but can be abused for Misdirection Attack;
therefore, the privately developed USSs for malware distribu-
tion and spam are out of scope. The reason is that the malicious
USS intends to host malicious resources from various hidden
servers, which do not need a security guarantee for serving
trusted content. Also, popular SUSS (e.g., “t.co” in Twitter) is
out of the scope because it serves links from anyone without
limitation and lacks trust.

URL
Collector

response
code

response
header

URL length

Binary Classification Module

shortened?
SUSSDUSS

dedicated? manual
check

reputation?

DUSS-
Links

Fig. 2. Top-down approach overview for locating real-world DUSSs.

III. DUSS: A PRELIMINARY STUDY

In this section, we perform a preliminary study on existing
DUSSs. We aim to understand their popularity, security de-
signs (including deployment models and security checks), and
potential attack surfaces.

A. DUSS Popularity

We bootstrap our study by collecting real-world DUSS-
shortened links as a data set. The key insight is that the DUSS-
shortened links can reflect the real-world usage of DUSSs
despite these DUSSs being hidden. However, it is challenging
to determine which links are shortened by DUSSs, considering
the vast amount of URLs on the Internet. To address this,
we present a top-down approach using binary classification
modules for different URL features, as illustrated in Figure 2.

First, we use a web crawler to collect public user-posted
URLs from three leading social media platforms: Twitter,
Facebook, and Weibo. For example, we manually search the
verified accounts of Fortune Top 500 companies on Facebook,
collect their Page IDs, and submit these IDs to the Facebook
Graph API [26] using our authorized access token to collect
their historical posts. Finally, we use regular matching to
extract URLs from the full text of these posts.

Second, we dynamically visit them and classify whether
they are shortened links based on two features: short length
and link redirection. We can learn the baseline of these
features from SUSS-shortened links because of their similarity.
Specifically, we collect and analyze 1,000 shortened links
from 654 SUSSs extended from previous work [10]. Our
observations show that a shortened link has: (i) a maximum
URL path length of less than 17 characters; (ii) an HTTP
response header contains “30x” HTTP code or uses “Location”
or “Refresh”; (iii) or a response body contains navigation code,
such as modifying the “location” property of the DOM.

Third, if they are shortened links, we exclude SUSS-
shortened links by comparing their domain with the above
SUSSs. After that, we identify whether the domain name has
a good reputation by matching it with the top 1M SLD7

domains from Tranco [27]. Because the Tranco list ensures the
domain name has a good reputation, thus malicious domains
can be filtered out. Finally, by manually checking their website
ownership, we verify whether they are DUSS-shortened links.

We successfully find 1,038 DUSS-shortened links from 130
million URLs (in a month experiment in August 2023), which
can be grouped into 88 unique DUSSs by their FQDNs (fully
qualified domain names). These popular DUSSs are provided

7Second-level domain represents the website and its owner.

4

0-10 10-100 100-1K 1K-10K 10K-100K
Domain Rank

0
5

10
15
20
25
30
35

of

 D
U

SS
s

21

36

17

10

4

Fig. 3. Domain category ranking statistic of DUSSs.

(a) Self-Developed DUSS

(b) Third-Party Hosted DUSS

DUSS
Corporation

brand domain

Resolution
Server

link.brand.com TTL A c.o.r.p

link.brand.com TTL CNAME custom.bnc.lt
custom.bnc.lt TTL A b.t.l.y

redirect

redirect

link.brandA.com
c.o.r.pA

b.t.l.y

targetA.com

redirect

redirect

redirect

redirect

visit

visit

config

brand domain
config

Clients Target
Provider

link.brandB.com

link.brandC.com

visit

visit

DUSS
Corporation

Resolution
Server

Target
Provider

link.brandA.com

link.brandB.com

link.brandC.com

visit

visit

c.o.r.pB

c.o.r.pC

targetB.com

targetC.com

targetA.com

targetB.com

targetC.com

Clients

Domain Configuration

Domain Configuration

Fig. 4. Two typical deployment models of DUSS.

by famous corporations such as Baidu, Reddit, and YouTube.
Figure 3 illustrates the website ranking in their corresponding
category8. There are 64.8% DUSS domains (57 out of 88)
ranking within 100, and 90% of the domains ranking within
4K. These statistics explain the great popularity and reputation
of DUSS in daily life.

B. Popular DUSS Infrastructure

In this section, we perform a preliminary study on how
the 88 DUSSs are deployed and used for link shortening.
The purpose is to understand the typical infrastructure of
DUSS and further support the automatic mining of these
link shortening APIs (see Section IV). Our methodology is
as follows. First, we cluster the domain DNS records (i.e.,
CNAME, A record) of 88 DUSSs and search them in online
engines to unravel their deployment models. Second, we
manually sample the top-ranked DUSSs to analyze their access
methods. Specifically, we collect the landing web pages from
their shortened links and explore their functionalities to verify
the use of link shortening services.

Deployment Model. Figure 4 illustrates two typical models
in existing DUSSs. The details are described below:

8The ranking data is collected from Alexa web ranking [28], which provides
more information about the ranked domain than Tranco.

• Self-Developed. In this model, the corporation provides
the servers and binds the domain name DNS record
directly to the IP address of the link resolution server.

• Third-Party Hosting. In this model, commercial USS
provides the server, and the corporation configures the
domain name DNS record (e.g., CNAME, A) to point to
the alias name or IP address of the third-party resolution
server. We find five popular commercial USSs, including
Bitly PREMIUM [2], TinyURL pro [29], Rebrandly [30],
Branch.io [31], and AppsFlyer [32].

Our statistic shows that over 73.9% of DUSSs (65 out of
88) are self-developed, while 23 are third-party hosted. We list
the top-ranked 15 DUSSs and five third-party hosting services
in Appendix Table III and IV, respectively.

Link Shortening. Typically, there are two ways to use the
DUSS for link shortening, as described below:

• Access from client-side applications. In this scenario, the
client-side applications invoke the link shortening API to
dynamically generate the shortened links. We find that at
least 53.3% of DUSSs (8 out of 15) can be accessed by
their client-side applications, which are usually initiated
by users during sharing activities. Among these, four are
accessible by mobile and web apps, while the remaining
four can only be accessed by mobile apps.

• Access from the admin portal. In this scenario, the web
content provider can directly log into the DUSS admin
portal, and manually generate the shortened links. We
assume the 7 (out of 15) DUSSs shortening links in their
admin portals since we do not find any shortened links
generated when manually exploring their applications.

Over half of the DUSSs use the former method, exposing a
broad attack surface. Interestingly, the link-shortening server
often uses a private domain name and IP address, distinct from
those used by the shortened link resolution server. This design
may reduce the attack surface of link shortening services, but
it also makes it more challenging for security researchers to
discover and test their security.

C. Security Design and Attack Vector

1) Security Design: In this section, we perform a survey
study on what security checks exist in DUSSs. Our method-
ology is as follows: We first analyze the security-related
description from documentation of five third-party commercial
services about how to secure the link shortening service. Then,
we also manually test the link shortening service in the top
15 self-developed DUSSs to cross-validate our findings.

The URL contains three parts: scheme, domain, and path,
which naturally categorize three parallel security checks:

• Scheme Check. This checks whether an allowed URI
scheme (e.g., http, https, or developer configured) is
contained in the URL.

• Domain Check. This checks whether the FQDN matches
with the allowlist configured by developers. The compari-
son can be strict equals or vague matching (e.g., endswith
or contains).

5

• Path Check. This checks whether the URL strictly
matches the prefix configured by developers, e.g., only
the URL that starts with “https://www.reddit.com/r/” can
be shortened by Reddit.

However, the implementation of security checks can be
diversified in different DUSSs. Not only is there no standard
for security checks, but DUSS security depends on how
developers configure these allowlists, indicating that various
security holes could exist in the DUSS ecosystems.

2) Attack Vector: For each type of security check, we
summarize the potential vulnerabilities that could lead to the
abuse of DUSSs. These vulnerabilities are reviewed from
academic work [33], [34] and non-academic report [35] related
to URL check bypass. Then, we manually test the 15 popular
DUSSs and five third-party hosting services using our accounts
and servers. In particular, we systematized the different attack
vectors that can be exploited to bypass these checks in DUSS.

Flawed Scheme Check. This flaw is that DUSS does
not check the URI scheme. Critical URI schemes such as
javascript can cause malicious code injection in the mobile
WebView [36]. For example, the “javascript://allowed.com/
%0a%0dalert(1)” can bypass the domain check and execute
JavaScript code in WebView. Customized malicious schemes
can be recognized as deeplinks by Android or iOS that open
specific applications. For example, “evilscheme://poc” can
launch the malicious apk installed on the mobile device.

Flawed Domain Check. We identify three flaws that may lead
to a domain check bypass:

• Flawed Domain Parsing. This flaw happens when pars-
ing URLs and extracting their FQDNs. For example,
“malicious.com\.benign.com” is recognized as a sub-
domain of benign.com; however, it eventually loads the
malicious.com. For another example, “allowed.com:x@
evil.com” may be mistakenly parsed, and allowed.com
is checked as the domain name, but evil.com is visited
eventually in the browser.

• Flawed Domain Matching. This flaw is that the DUSS
uses a broad matching algorithm, thus being able to serve
potential malicious URLs. The main reason is the lack of
balance between business and security requirements. For
example, DUSS may use endswith or contains to
allow different sub-domains within the same host domain.
Therefore, when the allowlist contains benign.com, an
adversary can bypass the check using a domain like
evilbenign.com or benign.com.evil.com.

• Flawed Domain Asset. Even if the matching algorithm
and URL parser are correct, the domain check may still
be vulnerable to other web content manipulation. First,
the allowed domain may be susceptible to subdomain
takeover [18], domain expiration, or domain abuse in
public hosting services, such as a SUSS or content de-
livery network (CDN). Second, URLs under the domain
could have vulnerabilities that allow an attacker to control
its content, such as open redirect flaws (CWE-601) and
cross-site scripting (XSS).

Flawed Path Check. This flaw is a subset of the flawed
domain assets in the domain check. The path check is flawed
if the vulnerable URL includes the legitimate path suffix.

To summarize, the lack of standardization and diversified
implementation of security checks in link shortening service
indicates a worrying situation about the security of DUSSs.
Considering that DUSSs are frequently accessed from client-
side applications of their corporations, the attack surfaces are
widely exposed. The results of this preliminary study urge us
to build an automatic tool to inspect the real-world prevalence
of vulnerabilities in DUSS (RQ2) in depth.

IV. VULNERABLE DUSS IN THE WILD

In this section, we present our measurement study on the
prevalence of DUSSs that can be abused in the real-world
by leveraging a novel DUSS interface testing tool, Ditto.
We start by describing the overview technique challenges and
Ditto’s solution in Section IV-A and present three stages of
Ditto and their implementation in Sections IV-B– IV-E. The
results of this study are presented in Section IV-F.

A. Ditto Overview

We bootstrap our study by recognizing and testing client-
side DUSS link shortening APIs from the mobile applications
developed by the DUSS corporation. The reasons are twofold.
On the one hand, the client-side link shortening API is the
only attack entry of the web attacker without the need to hack
into the DUSS server, as defined in our threat model. On the
other hand, mobile apps developed by DUSS corporations are
most likely access to DUSSs (see Section III). However, this
is challenging due to the following reasons.

1) Technique Challenge: First, it is hard to identify the link
shortening APIs, considering various web service APIs based
on HTTP/HTTPS communication in the client-side applica-
tions. Specifically, it is hard to identify the link shortening
APIs of self-developed DUSSs, which are often customized in
the URL hosts, paths, and queries. Second, additional security
measures, such as cryptographic protection, are implemented
to safeguard the integrity of dedicated API requests. We
manually sample the network traffic of eight DUSSs identified
in Section III-B and find that six are strictly protected by API
signature or body encryption. These defenses make intuitive
API testing approach, such as replaying the reconstructed
API requests and modifying their required values as done
in previous works [37], impractical in this scenario as it
compromises integrity guarantees. Last but not least, ensuring
the effectiveness of vulnerability detection while minimizing
the ethical burden on DUSSs poses a challenge. That is,
conducting random, exhaustive black-box testing, as seen in
previous work [33], where enumerating a large amount of
possible illegal characters is not feasible.

2) Solutions Overview: Now let us describe how Ditto
addresses the aforementioned challenges. The overall archi-
tecture of Ditto is illustrated in Figure 5, which consists of
three major stages.

6

javascript://allowed.com/%0a%0dalert(1)
javascript://allowed.com/%0a%0dalert(1)
evilscheme://poc
malicious.com\.benign.com
allowed.com:x@evil.com
allowed.com:x@evil.com

API Inference Directed API Trigger Vulnerability Detection

Not Exist

Domain Matching?
Error/Original URL Inadequate

Not Exist

InconsistentError/Sanatized

Domain Asset?
Not Found

Provenance Analysis

Link Shortening Inference:
with matched indicators

Web API Locator Instrumentation

UI-driven Trigger

API
Response

Android Applications

Compromise

Not Compromise

Scheme?

Domain Parsing?

Vulnerable

Test Suite

Decision Tree

scheme test case
domain test case

Slink
error message

… …

Test Result

… …

scheme parser

domain … …

Fig. 5. The architecture overview of Ditto.

First, Ditto infers the link shortening behavior from the
implementation logic of a Web API. Specifically, Ditto stat-
ically identifies the Web API call sites and analyzes their call
context along control- and data-flow graphs to find indicators
that reflect the functional behavior of link shortening, e.g.,
request and response traffic for self-developed DUSS or usage
of standard SDK methods for third-party hosted DUSS. If any
indicators are detected, Ditto reports the API as a potential
link shortening API. The correctness of inference is verified
in the directed API trigger stage.

Second, Ditto uses a dynamic API trigger to generate le-
gal and modifiable API requests while bypassing API integrity
safeguards. The key insight is that integrity safeguards become
active only when the API request body is formed; therefore,
we can bypass them by modifying the source of the URL to
be shortened. Specifically, Ditto backtraces the URL object
that populates the request body to find its provenance–typically
a function due to programming conventions–and alters its
value before the construction of the request body. To achieve
this, Ditto leaves instrumentation on the provenance method
for the convenience of modifying URL value in vulnerability
detection. With all the work done, Ditto uses the UI-driven
application testing technique to trigger the UI event that leads
to the call of link shortening API. To this end, we could
bypass cryptography defenses and generate legal API requests
in vulnerability detection.

Lastly, Ditto performs vulnerability detection guided by
a minimal decision tree with little overhead to the back-end
server. The decision tree contains a sequence of test suites,
which follows the control variate principle to test different
categories of vulnerability mentioned in Section III. When the
target link shortening API is triggered, Ditto mutates the
URL to be shortened to generate a crafted one that lands at
our server (i.e., untrusted web server) or contains the attacker-
controlled script. By leveraging the decision tree on the API
response, Ditto decides whether to conduct further testing
or conclude the procedure and generate a vulnerability report.

B. Link Shortening API Inference

Ditto searches Android applications to identify potential
DUSS link shortening APIs. Specifically, Ditto takes two
important steps to recognize the link shortening API: (i)

collecting Web API call sites, and (ii) identifying behavior
indicators of link shortening.

1) Web API Locator: Ditto identifies the Web API call
sites of various network request methods as our points of
interest (POIs). Specifically, the network request methods are
summarized from previous work [38], [37] that analyze Web
APIs in Android applications, which includes the standard
network request libraries in Android and Java (e.g., an-
droid.net.http.execute, java.net.Socket) and popular third-party
SDKs (e.g., Okhttp and Retrofit2). To reduce the search scope,
we collect UI event handlers (e.g., methods that override
View.onClick, onLongClick, and AdapterView.onItemClick)
as entry points, analyze their reach-ability to Web API call
sites, and retain only the reachable call sites as our POIs.
Because link shortening behavior is passively triggered by
users when using the application (Section III).

2) Link shortening inference: We consider a Web API to
have link shortening behavior if any of the following two
indicators are found in the call context:

• Both the request body and response body contain a
URL object. This indicator represents the functionality
of the link shortening API. To shorten a link, such an
API sends the request with a long URL and returns
the shortened link to the client side. Note that this is a
necessary but insufficient condition, which needs further
verification that the returned URL domain matches our
known DUSS domain name in the dynamic trigger stage.

• A POI is invoked by known SDKs provided by third-
party hosting services. This indicator strongly represents
the POI is related to a third-party hosted DUSS. Specifi-
cally, the POI is either invoked from the SDK method or
uses a third-party hosting service URL endpoint as the
communication server address. The SDK methods and
URL endpoints are collected from official documents, as
listed in Appendix Tables V and VI.

To detect the first type of indicator, Ditto needs to analyze
the data flow of the request and response body of the Web API
to find the reachable definitions of the URL string objects.
Note that we manually model the request body assignment
methods and response callback methods for various network
libraries, as done in previous work. Using this information,
Ditto can identify the request body, a parameter of the

7

assignment method (e.g., post(body) in OkHttpClient), on
the backward control-flow graph from the POI. Similarly, it
can locate the response body in the response callback method
(e.g., the return value of execute() in OkHttpClient) on the
forward control-flow graph. Then, Ditto conducts backward
and forward data-flow analysis on the request and response
bodies. During this analysis, Ditto identifies two types of
definitions for URL string objects: (a) the string conversion of
Android URI and Java URL class; (b) methods that store or
retrieve data from a key-value pair object (e.g., JSON), where
the key object contains a constant string (i.e., “URL,” “link”).
We also manually model frequently used data structures with
key-value pairs, which include the native org.json, as well as
four external libraries: Gson, Moshi, Protobuf, and Fastjson.

To detect the second type of indicator, Ditto collects the
method names from the call graph of POIs and string values
from the data-flow graph to match with the predefined SDK
methods or URL endpoints. If the method name matches pre-
defined SDK methods (Table V), Ditto determines whether
the POI contributes to the SDK method rather than an un-
related network event (such as log collection). We establish
the contribution of the POI through taint analysis, identifying
whether the propagation of SDK method parameters taints
the request body. If the POI contributes to the SDK method,
Ditto reports it as a call to the link shortening API. Oth-
erwise, Ditto conducts backward taint analysis from the
request endpoint object (tainted in the request method) to
extract the constant strings assigned to it. If the collected string
values match predefined URL endpoints (Table VI), Ditto
reports that the POI is a call to link shortening API.

C. Directed API Trigger

The directed API trigger leverages the program logic to
generate legal and modifiable link shortening API requests. It
contains three steps: (i) statically locate the provenance method
of URL object; (ii) add instrumentation on the provenance
method to dynamically modify the value of the URL object;
(iii) use UI-driven testing to trigger the API.

1) URL Object Provenance Analysis: Ditto performs a
static backward data-flow analysis on the identified URL
object that compose the request body of link shortening API.
The purpose is to find the provenance method that returns the
URL object. Specifically, we take a step back in our analysis
of the object that was previously assigned to the identified
URL object and locate its provenance method as the target
in instrumentation. This is because the initial identification of
the URL object’s provenance, like “android.net.URI.toString,”
may be extensively referenced throughout the program. Such
granularity in instrumentation could introduce significant over-
head or disrupt the program logic.

2) Application Instrumentation: We add the instrumenta-
tion code using the process hook technique, which can dynam-
ically modify the provenance method execution (i.e., return
value). The hook technique receives the package name of
the target application and method signature and intercepts the
target method when it is invoked during the execution of the

target application. Thus, we can replace the return value of the
provenance method (i.e., URL to be shortened) with our test
cases in vulnerability detection. We also add instrumentation to
the caller of link shortening API for monitoring its invocation
and to the response callback method for monitoring response
value (i.e., whether a shortened link is returned).

3) UI-driven API Trigger: We use the dynamic UI-driven
testing technique to explore the UI buttons that may trigger the
link shortening API. The UI-driven testing iteratively explores
clickable buttons on the current UI and auto-generates input
texts. The exploration stops when the link shortening API is
triggered or the one-hour exploration time limit is exceeded.
If the API is triggered and its response callback contains the
domain value of a known DUSS-shortened link, it is verified as
a true link shortening API. In the meantime, the UI exploration
sequence and button location will be saved and replayed to
repeatedly trigger the API in vulnerability detection. To this
end, we can leverage the code logic to generate legal API
requests while modifying the URL to be shortened.

D. Vulnerability Detection

Ditto performs two main tasks to validate whether a link
shortening API is flawed: (i) test case generation and (ii) API
request modification following the decision tree guidance.

1) Test Case Generation: First, we summarize a set of
proof-of-concept URLs, each exploiting one of the five types
of known URL check vulnerabilities (Section III-C2) found
in previous work [33], [34], [35]. Inspired by the principle of
equivalence partitioning [39] in software testing, we simplify
these cases by removing redundant ones that validate equiva-
lent URL check vulnerabilities. Besides, we prioritize retaining
those that can validate the widest array of URL checks. For
example, we retain the test case “evilallowed.com” because it
can validate both flawed domain matching algorithms using
“contains” or “endswith”. Then, we compile a test suite
that contains unique test case generation templates. These
templates represent the formula for constructing PoC URLs.
They involve mutating or replacing the scheme, domain,
and path of the intercepted URL (triggered by directed API
calls) with predefined payloads. We register a domain (e.g.,
evil.com) as the untrusted domain payload. We also collect
exploitable URLs under the domain assets of allowed.com by
leveraging web vulnerability detection tools. More details of
these templates are listed in Appendix Table VII.

2) Decision Tree Guidance: Let us describe how we build
the decision tree to prioritize our test sequence. A basic rule
here is to validate the consequent before its preconditions,
avoiding unnecessary validations. For example, validating the
parser will only become necessary if domain matching exists.
To this end, we organize the security validation scenarios and
their expected outcomes into a tree-like structure, as shown
in Figure 5. It considers four security test scenarios: scheme
check, domain matching, domain parsing, and domain asset
validation. The rounded square tree nodes represent tested
security scenarios, and each edge represents the expected ex-
ecution results. Ditto iterates each testing scenario from the

8

root node, uses corresponding test cases to replace the original
URL in the triggered API request, and checks if shortened
links have been successfully generated in its response message.
It then decides whether to continue or end the testing based
on the expectations from the decision tree. The details of the
procedure are described below:

• Test Scheme Check. We first validate whether a scheme
check exists. If not, Ditto reports a compromise. The
validation then continues for the domain check.

• Test Domain Allowlist Matching. We first test whether the
domain check exists. If not, Ditto reports a compromise
and ends the testing. Otherwise, it further tests whether
the DUSS adopts an inadequate domain-checking algo-
rithm. Only if our test cases fail will the validation
continue for domain parsing.

• Test Domain Parsing. This round uses crafted URL test
cases to explore whether the domain parser is flawed. If
DUSS successfully shortens one of the test cases, Ditto
reports a compromise. Otherwise, the validation continues
to validate vulnerable domain assets.

• Test Domain Asset. The vulnerable domain assets are
the minimal granularity in vulnerability detection. If one
vulnerable URL is not blocked by DUSS, it reports that
DUSS is compromised.

E. Ditto Implementation

Our static analysis module is implemented based on Flow-
droid [40], a popular Android application decompiler and static
analysis framework. It provides precise construction on the
data-flow and control-flow graphs and supports taint analysis.
The network request libraries used in locating Web API call
sites are summarized from related work [38] and popular third-
party libraries [41], [42], [43] in GitHub. The API instrumen-
tation is implemented based on Frida [44], which provides
a command line tool to load JavaScript instrumentation code
dynamically. Note that, during vulnerability detection, we only
use the most popular tool, Xray [45], for detecting XSS and
open redirect, and Aquatone [46] for detecting subdomain
takeovers. The main reason is that scanning for vulnerabilities
in websites or domains is not the focus of this paper. These
well-known corporations themselves should conduct more
comprehensive scans for the security of their websites and
domains. In UI-driven testing, we utilize TextExerciser [47] for
exploring and clicking UI buttons, which is implemented based
on Appium [48] and can automatically handle complex UI
events (e.g., user input for login). Ditto saves each test case
that successfully leads to a compromise in the vulnerability
report; thus, our tests are controllable and can be accurately
reported to DUSS corporations as proof of concept.

Data Set. We collect DUSS-related apps from two leading An-
droid app stores (i.e., Google Play [49] and WanDouJia [50])
by manually searching developer names. We check whether the
app’s developer name matches one of the DUSS corporations
and collect all apps under that developer tag. Our data set
contains 377 Android apps related to 88 DUSS corporations.

F. Evaluation

This section presents Ditto’s overall evaluation result.

Effectiveness. We list the overall vulnerabilities in the 15 top-
ranked DUSSs reported by Ditto in Table I. Specifically,
Ditto scans 377 apps and finds 58 apps with link-shortening
APIs, containing a total of 50 unique APIs. In vulnerability
detection, Ditto reports 22 vulnerable APIs. We manually
verify the reported vulnerable APIs, and all of them are true
positives. Here is the breakdown of their vulnerabilities: 11
DUSSs do not check the scheme, 16 DUSSs have flawed
domain matching, four have flawed URL parsing, and three
have flawed domain assets. In vulnerability detection of the
50 link shortening APIs, Ditto totally generates 373 test
cases, with 34 leading to a compromise. This not only shows
that our tool can effectively detect vulnerable DUSSs but also
shows no unacceptable overhead to the server.

False Positive Analysis. The static analysis may report in-
correct link shortening APIs, but these can be verified by the
dynamic API trigger. Since Ditto identifies a link shortening
API is vulnerable only because it observes a shortened link is
generated for the crafted malicious URL, there is no false
positive on the vulnerability report.

False Negative Analysis. In reviewing false negatives of
the directed API trigger, two apps are reported as having
potential link shortening APIs but not being triggered by
Ditto. We manually reverse-engineer and test their API
endpoints, confirming they are false negatives. Specifically,
one app fails because its link shortening API is called from
an unreachable activity. Another app has a complex UI layout
using nested WebView; thus, the existing UI-driven testing tool
cannot precisely identify the button to click. As for the false
negatives in vulnerability detection, we manually submitted
crafted URLs following our templates (Table 7) to the 28
link shortening APIs reported by Ditto as not compromised
and two non-triggered APIs and observed they could not be
shortened in the API responses. The results indicate that these
DUSSs enforce strict domain-based allowlist configuration,
allowing only links from their main website domain, and no
vulnerable URLs are detected on the main website either.
Thus, none of them is a false negative.

Detection Scope. Ditto has some limitations despite our best
efforts to design and develop its methodology. First, testing the
DUSS with no directly exposed link shortening API is limited.
For example, the DUSS might be accessed by the application
server when its app user posts a message containing a long
URL, but the corresponding response to the app may not
include the shortened link. Such a case can be addressed
by fully automatic UI-driven testing with optical character
recognition to recognize whether shortened links are displayed
on the screen. Second, Ditto can analyze hybrid apps by fur-
ther modeling the JavaScript-to-Java communication functions
(e.g., annotated with “@JavaScriptInterface”). While our tool
may not achieve a comprehensive test of vulnerable domain

9

TABLE I
VULNERABILITY BREAKDOWN IN THE TOP 15 VULNERABLE DUSSS. SYMBOL “✔” MEANS THE DUSS IS COMPROMISED IN THIS URL CHECK

SCENARIO. “-” MEANS NO VULNERABILITY IS FOUND IN THIS CATEGORY. “M/P/A” STANDS FOR VULNERABLE MATCHING/PARSING/ASSET.

Corporation Website # Visiting Brand Domain Visiting Tranco Rank Development Scheme Domain(M/P/A)

1 Huawei huawei.com 92.9M url.cloud.huawei.com - 295 Self-developed - ✔(A)
2 Lazada lazada.com 1.6M s.lazada.sg 231.6K 6k Self-developed - ✔(P)
3 CastBox castbox.fm 1.2M castbox.fm 1.2M 6k Self-developed ✔ ✔(M)
4 Sina sina.cn 107.7M t.cn 1.4M 8k Self-developed - ✔(M)
5 Amazon amazon.com 2.4B a.co 17.3M 8k Self-developed ✔ ✔(M)
6 ixigo ixigo.com 12.3M f.ixigo.com 188.7K 13k Self-developed - ✔(M)
7 Weilai nio.cn 345.6K l.nio.com 2.8K 22k Self-developed - ✔(M)
8 Flipboard flipboard.com 4.5M flip.it 852.6K 42k Self-developed ✔ ✔(M)
9 YamiBuy yamibuy.com 1.1M u.yamibuy.com - 56k Self-developed ✔ ✔(M)
10 Yelp yelp.com 134.8M yelp.to 1.6M 183k Self-developed - ✔(P)
11 Xiaohongshu xiaohongshu.com 162.1M xhslink.com 928.9K 295k Self-developed ✔ ✔(M)
12 China Unicom 10010.com 3.4M u.10010.cn 58.9K 526k Self-developed - ✔(P)
13 momo shopping momoshop.com.tw 33.6M momo.dm 237.8K 694k Self-developed - ✔(M)
14 flipp flipp.com 2.8M click.flipp.com 124.8K 14k Third-party Hosted - ✔(M)
15 TubiTv tubitv.com 36.3M link.tubi.tv 202.8K 49k Third-party Hosted - ✔(M)

assets, our approach can guide developers to conduct more
comprehensive security testing in a white-box scenario.

Although Ditto has been developed and implemented to
analyze Android apps, its core solution can be extended to
analyze websites. Specifically, in API inference, static analysis
can be adapted for JavaScript code using frameworks like JS-
WALA [51] or AST-based method[52]; in API trigger, UI-
driven testing can be replaced with Puppeteer [53] and the
intercept of link shortening API can be done easily with the
help of Chrome Developer Protocol [54].

V. SECURITY IMPACT: A SURVEY STUDY

In this section, we perform a survey study to demonstrate the
real-world effect of the Misdirection Attack on social network
users and domain-based checkers (for answering RQ3).

A. If Social Users Hold Implicit Trust

It is already known that social network users prefer to trust
URLs with well-known domain names [13]. Besides, current
secure mechanisms such as link preview [55] can be unreliable
in helping users decide the URL’s trustworthiness. Therefore,
we can conclude that the better the reputation of a URL
domain name, the more likely it is to gain users’ trust and
carry out phishing attacks.

To better understand the security impact of Misdirection
Attack on social network users, and whether it gains more trust
than other phishing techniques, we compare the domain rank
of vulnerable DUSSs with other phishing URLs. Specifically,
on January 22, 2024, we downloaded phishing URLs from
PhishTank [56], which contains 41,643 online and verified9

URLs. Then, we compute the SLD rank based on the Tranco.
Figure 6 presents the unique SLD rank distribution of

the vulnerable DUSSs shortened links and existing phishing
URLs. Although a few PhishTank URLs exploit vulnerable
web services hosted on Google and achieve a very high
rank (top 1 in Tranco), the majority (72.1%) of PhishTank

9The “online and verified” tag is provided by PhishTank.

100 101 102 103 104 105 106

Domain Rank

DUSS

PhishTank

10,924295 694,300

49,6931 >1M

Fig. 6. Domain rank distribution of PhishTank and vulnerable DUSSs.

URLs have a domain rank lower than the median of DUSS-
shortened links. In summary, the Misdirection Attack demon-
strates greater effectiveness in gaining the trust of social
network users.

B. If Security Developers Hold Implicit Trust

In this section, we first summarize the types of domain-
based checkers and then conduct an independent security
analysis for them. The purpose is to understand how security
developer design the policy of the domain-based checker,
specifically, whether they hold implicit trust in DUSS short-
ened links. We also enrich our study with three case studies.

1) Domain-based Checkers: We systematically classify the
domain-based checkers from multiple sources, including the
academic literature [57], [58], [59], [55], [34], the CVE
database [60], the CNVD database [61], and non-academic
resources (see, i.e., [62]). Specifically, we study the checkers
that can be affected by domain-related vulnerabilities listed
on OWASP [63], including open redirection [64], subdomain
takeover [65], and domain expiration [66].

We find five scenarios of using a domain-based security
checker, as detailed below:

• Applink verification. In this scenario, apps configure “ap-
plink” as a special deeplink recognized by mobile devices to
automatically launch the app when mobile users click the link.

• External link warning. In this scenario, mobile apps or
websites use a domain-based allowlist to check and alert their
users before navigating to external links.

10

• OAuth redirection. In this scenario, the websites check
the redirection URL using a domain-based allowlist after the
OAuth [67] is completed.

• SSRF protection. To mitigate the Server-Side Request
Forgery (SSRF), web servers may adopt domain-based al-
lowlists [68], [69], e.g., verifying the domain of a user-posted
URL to retrieve its preview content.

• Link security checker. Online services offer link security
checks may include domain-based blocklists to filter out links
hosted on malicious servers, including popular spam filters like
Spamhaus [70] and MxToolBox [71], phishing detectors such
as Google Safe Browsing (GSB) [72] and PhishTank [56], and
malware detectors like VirusTotal [73] and Malwareurl [74].

2) Analysis Methodology: Here, we present our methodol-
ogy for identifying the real-world domain-based checkers and
testing whether they can be exploited by compromised DUSS-
shortened links discovered by Ditto. In the meantime, we
also conduct a comparative experiment using other standard
URLs, such as the SUSS-shortened links. The purpose is to
better understand the security implications and advantages
of Misdirection Attack. Specifically, the experiment group
contains 22 DUSS-shortened links redirecting to the landing
page hosted on our server. The control group contains URLs
pointing to our server (as untrusted URLs) and their shortened
links generated by five commercial URL-shortening services.
Note that we leave the analysis of SSRF to Appendix D, which
carries out the theoretical analysis for ethical reasons.

Analysis of applink configuration. We aim to test whether
the DUSS-shortened untrusted URL can be recognized as
an applink and loaded into the WebView component of the
mobile app to launch the Misdirection Attack. To do this, we
analyze the mobile apps with link-shortening API identified
in Section IV because these apps are more likely to configure
DUSS-shortened links as applinks. We use static analysis to
identify the apps with WebView and extract their applink
and deeplink configurations from the AndroidManifest file.
For applink configurations containing the DUSS domain, we
directly trigger the app using the Android Debug Bridge (adb),
sending an intent to launch the app with applink as input. We
also add the test links as a parameter on the deeplink path
and dynamically trigger them using adb to test whether they
can be loaded. Lastly, we observe whether our landing URL
is loaded into the WebView.

In this attack scenario, the remote attacker injects mali-
cious JavaScript or phishing websites into the victim user’s
mobile device, leading to serious remote code injection or
phishing attacks. The WebView often contains sensitive run-
time APIs to access the underlying file system, GPS, and
rich app functions, which are exposed via JavaScript bridge
(e.g., addJavascriptInterface). Therefore, the effect
of such an attack will vary in different applications, such
as user private information leakage, privilege escalation, and
malicious apk installation.

Analysis of external link warning service. This experiment
tests whether a warned external link triggers the warning after
being transformed into DUSS-shortened links. We manually
collect the official websites and apps that contain warning ser-
vices from each vulnerable DUSS corporation. The websites
and apps allow users to send URLs to the screen, and navigate
when clicking the link. For example, we post a comment as the
user along with a shortened link and then use another account
to click on the link.

In this attack scenario, remote attackers can lure victim users
to malicious websites, leading to stealthy phishing attacks.

Analysis of OAuth redirection. This experiment measures
whether an attacker-controlled URL can bypass the OAuth
redirection check after being shortened by vulnerable DUSS.
For each DUSS corporation, we manually collect the user login
URLs with OAuth protection on their official websites. Next,
we manually complete the login procedure while modifying
its callback URL in the address bar to an untrusted URL on
our server and its DUSS-shortened and SUSS-shortened links,
respectively. If the websites navigate to the untrusted URL
after OAuth completion, it leads to the Misdirection Attack.

In this attack scenario, scammers can lure victim users to
their phishing websites after user login. If the token is carried
in the redirect URL, this can also lead to token leakage.
Remote attackers can access and manipulate the victim users’
accounts on target websites.

Analysis of link security checkers. This experiment tests
whether a URL identified initially as malicious by the online
checker becomes innocent after being shortened by DUSS.
We choose the most popular link security checker in each
scenarios: VirusTotal (malware), Spamhaus (spam), and GSB
(phishing). Then we collect the malicious URLs from public
blocklists [75], [76] and submit them to these scanners to
verify if they are reported as malicious. For ethical consider-
ations, we build a USS on our server as the DUSS to shorten
these links. We also generate SUSS-shortened links for these
blocked URLs using our own accounts. Finally, we send these
shortened links to online checkers to test whether they are
reported as malicious.

In this attack scenario, web criminals can abuse vulnerable
DUSS to distribute malware, spam sites, and phishing sites.

3) Evaluation: Table II illustrates the overall affected
domain-based checkers, including popular customized check-
ers used in applications developed by vulnerable DUSS cor-
porations (found in Section IV) and popular online checkers.
These applications include the most popular Android applica-
tions and websites from each vulnerable DUSS corporation –
22 apps and 22 websites.

Let us provide a detailed breakdown of the result. In testing
applink, we find three apps directly configure the DUSS-
shortened links as applink are vulnerable, leading to remote
code injection. Seven apps can be attacked by both DUSS-
shortened links and SUSS-shortened links due to the lack of
security check. In testing external link warning services, four
apps and Sina’s website employ checks and give warnings

11

TABLE II
OVERALL RESULTS OF THE VULNERABLE DOMAIN-BASED CHECKERS. “A”

FOR MOBILE APP; “W” FOR DESKTOP WEBSITE.

Corporation Applink External Warn OAuth Online
(A) (A) (W) (W) Checker

1 Flipp ⊙ ⊙ - ◦ ⊙
2 Xiaohongshu ⊙ • - ⊙ ⊙
3 China Unicom • ⊙ ⊙ - ⊙
4 Weilai ⊙ ⊙ - - ⊙
5 Huawei ⊙ • - • ⊙
6 Flipboard • ⊙ ⊙ ◦ ⊙
7 YamiBuy - - - • ⊙
8 Gojek ⊙ • - - ⊙
9 Fox Sports - - ⊙ ⊙ ⊙
10 ixigo ⊙ ⊙ - - ⊙
11 CastBox - ⊙ ⊙ • ⊙
12 Adidas ⊙ ⊙ ⊙ ◦ ⊙
13 Sina • • • ◦ ⊙
14-22 Others ◦ ◦ ◦ ◦ ⊙

•: Only Misdirection Attack. ⊙: Vulnerable to all attacks.
◦: Not vulnerable. “-”: Scenario not found.

for untrusted links and their SUSS-shortened links; however,
there is no warning for DUSS-shortened links. In contrast, the
websites of five corporations and apps from eight corporations
lack such checkers, making them susceptible to all untrusted
links. In testing OAuth, seven out of nine corporations adopt
the domain-based checker in their website login procedure.
However, Huawei, Yamibuy and CastBox are vulnerable to
the compromised DUSS-shortened links. While Xiaohongshu
and Fox Sports have no such check, making them vulnerable
to all untrusted links. In testing online link security checkers,
both DUSS- and SUSS-shortened links can bypass the GSB,
Spamhaus, and VirusTotal, similar to previous findings [77].

Note that we also find data over-collection, which is a
privacy concern in which a corporation may collect more data
than it needs from users. Specifically, Sina Weibo logs detailed
user activity, including their visited web pages and clicked
links, and sends them to Sina’s server.

4) Case Studies: Now we illustrate three interesting cases:

Example 1 [Xiaohongshu]: One-click attack for informa-
tion leakage. This example uses the compromised DUSS-
shortened link and combines the applink and external link
warning bypass in the Xiaohongshu mobile app, a social
app with over two billion downloads, to launch Misdirection
Attack. An adversary can further abuse its sensitive WebView
runtime APIs to steal private information (e.g., phone num-
bers) of victim users and spy on them.

Xiaohongshu has a self-developed DUSS using the do-
main name xhslink.com, with more than 162 million visits.
However, the DUSS lacks of URL checks, thus is compro-
mised for shortening any attacker controlled URLs. Then,
let us look at bypassing the URL checks in Xiaohong-
shu’s mobile app. The attacker crafts a phishing deeplink
“xhsdiscover://webview/[shortened-link]” and spreads it on so-
cial platforms. When a mobile user clicks the link, Xiaohong-
shu will start and check whether the link is external. However,
Xiaohongshu configures the DUSS domain in its allowlist. To

this end, the shortened link is loaded. It redirects the WebView
to load and execute malicious JavaScript from the attacker
server without warning the victim user. The malicious code
can abuse sensitive runtime APIs, e.g., getUserInfo to get
the user’s phone number or getCurrentGeolocation to
monitor the precise location.

Example 2 [Huawei]: Phishing in OAuth redirection.
Huawei, the largest mobile device vendor in China, uses
its sub-domain url.cloud.huawei.com to host shortened links,
which has more than 92.9 million visiting. However, Ditto
finds it has a vulnerable link shortening API in Huawei App
Gallery, a mobile app preinstalled on Huawei devices. This
vulnerability is found in testing the domain asset, which allows
URLs with a common domain name bit.ly to be shortened.
Thus attacker can first shorten the phishing URL using Bitly
free account, then further compromise the DUSS of Huawei
using the malicious bit.ly link.

Next, Huawei uses the OAuth redirection link, i.e., https://
uniportal.huawei.com/.../login.html?redirect=[redirectURL], in
redirecting the user to the redirectURL. This redirection is
checked, and only allows its official website. Specifically,
Huawei configures “*.huawei.com” in its allowlist. Therefore,
the web criminal can craft a user login URL redirecting to
malicious shortened links and publish such links to social
network platforms. When victim users click these links and
log into their Huawei accounts, their browser will be stealthily
redirected to the phishing site, leading to phishing attack. For
example, the attacker can fake a login failed web page and
require victim users to re-enter their account and password to
steal their credentials.

Example 3 [VirusTotal]: Nested shortened links to cheat
link safety checker. This case illustrates an interesting strat-
egy in cheating link safety checker, and keeping malicious
URL live longer. Specifically, VirusTotal aggregates multi-
ple antivirus engines to help users understand whether the
submitted URL is potentially harmful. However, with the
help of USS, malicious URLs can evade partial engines in
VirusTotal, including the one uses domain blocklist [78]. In
our experiment of using our USS to shorten the malicious link,
only one engine in VirusTotal issues a warning. Moreover, if
we double-shorten these malicious URLs, VirusTotal no longer
reports them as malicious. Thus, web criminals can use USS
to generate nested shortened links, and keep their malicious
URLs to live longer.

VI. DISCUSSION

A. Lessons learned and mitigation

The Misdirection Attack exploiting the abuse of trust tran-
sitivity can be initiated through DUSS and other reputable
link hosting services (e.g., Google AMP) with vulnerable URL
checkers. Thus, the most important lesson from our research is
that the URL checker’s security design should obey the least
privilege principle to prevent potential misdirection in URL
shortening or loading. Essential mitigation should include the

12

https://uniportal.huawei.com/.../login.html?redirect=[redirectURL]
https://uniportal.huawei.com/.../login.html?redirect=[redirectURL]

secure design of API protection, URL check, and allowlist
configuration. We present three mitigation rules:

• The link shortening API should avoid getting URLs directly
from the front end to reduce the attack surface. For example,
DUSS can use IDs to map trusted long URLs, enabling DUSS
to receive only the ID from the front-end application, retrieve
the long URL on the server side based on this ID, shorten it,
and return the result to the front-end application.

• Use consistent and precise URL check algorithm. First, the
URL parser adopted in client-side and server-side URL checks
should be consistent and strictly follow one standard, such as
using standard parser libraries (e.g., whatwg-url, urllib.parse).
Second, URL-based security checks must cover each URL’s
landing pages. The policy should combine URL schemes,
domains, and paths, restricting untrusted or unnecessary en-
tities. Learning traditional browser defense mechanisms such
as content security policy could benefit this.

• Update and verify the allowlist configuration regularly. URL
checkers in DUSSs, apps, and websites may have different
security constraints; thus, communication between different
checkers’ developers is required to reach a consensus on
security constraints. For example, the DUSS often has broader
constraints on the URLs they trust (for various first-party
resources). However, the domain-based checkers (e.g., OAuth,
link warning) should trust only limited resources. The devel-
opers need to work with each other more frequently to update
the security constraints. Also, the allowlist configuration can
benefit from regularly using web security scanners to verify
the security of domain assets.

B. Ethics Concerns

We discuss the ethical considerations of our study, including
URL collection, vulnerability testing, and disclosure.

Data Collection Ethics. We adhered to ethical guidelines
from “The Menlo Report [79],” “Ethics and Internet Mea-
surements [80],” and “Ethics in Cybersecurity Research and
Practice [81].” Our data collection followed Facebook’s rate
limits (<200 API calls per user per 60 minutes), similar to
previous studies [82], [83], [84], [85]. We collected only pub-
licly accessible URLs without personal information, ensuring
no adverse effects on Facebook users or services.

Vulnerability Testing Ethics. Our vulnerability testing
avoided harm to remote servers. The API trigger ran at low
speed, simulating regular user interactions with a limit of 12
requests per server. Xray payloads [86] used in testing were
harmless, ensuring no impact on server databases. To avoid
affecting other users, we conducted all tests with our test
accounts on our devices.

Vulnerability Disclosure. Following the OWASP Vulnera-
bility Disclosure Cheat Sheet [87], we notified all 22 DUSS
corporations of their vulnerabilities and provided a 45-day
fix deadline. Reports included PoCs, details of vulnerabilities,
and affected services. We received confirmations from 13
corporations, resulting in 16 CVE-ids and 6 CNVD-ids, with

12 corporations having fixed their issues by the time of writing.
One corporation fixed its vulnerabilities without a formal reply.

Our research can help DUSS vendors prevent abuse and
protect users, enhancing security and user experience on social
media platforms like Facebook and Twitter.

VII. RELATED WORK

URL shortening service. As the USS has become popular
in recent years, many researchers have addressed the security
and real-world abuse problem of shared USS in social media.
Neuman et al. [10] presented an analysis of the security and
privacy risks of shortened links. Maggi et al. [11] collected
25 million shortened links belonging to 622 distinct SUSSs
and measured the malicious URLs. Li et al. [88] proposed
using the channel of USS for delivering messages. Gupta et
al. [12] studied the Bitly service and found it failed in detecting
malicious web URLs such as spam and pornographic content.
Albakry et al. [13] conducted a survey and revealed the low
abilities of users to predict the URLs’ landing page. Fukushi
et al. [14] studied and revealed mal-advertising behavior in ad-
based USSs. As a comparison, our paper focuses on a special
type of USS, only for dedicated usage, with a different threat
model from prior works, which has not been studied before.
Also, previous work can not identify the hidden link shortening
APIs and perform security tests on them.

Domain Security. Domains, as the core entry point to the
Internet, have garnered significant attention from security
researchers. Previous studies have thoroughly analyzed domain
infrastructures [89], [90], [91] and proposed various domain-
oriented attacks [17], [18], [92], [93]. Wei [90] analyzed the
content delivery network and proposed a domain shadowing
attack that can bypass censorship to access blocklisted web-
sites. Liu et al. [91] uncovered 467 exploitable dangling DNS
records that could lead to domain hijacking and proposed
defense mechanisms. Li et al. [89] analyzed the DNS resolvers
and proposed the Phoenix Domain attack, making malicious
domains irrevocable. Watanabe et al. [17] showed the web
rehosting service (e.g., Google translator) can be abused to
break the same origin policy. Squarcina et al. [18] thoroughly
studied the same site attacker and illustrated its impact on web
application security, such as CSP, CORS, and website cookies.
So et al. [92] and Level et al. [93] discussed the security
implications of expired but re-registered popular domains.

Application Vulnerability Analysis. Open Redirect vulnera-
bilities are a significant concern in applications and have been
the subject of extensive research in the academic community.
Rastogi et al. [57] developed a methodology to investigate
malware infections and scams that target mobile users in the
interface between mobile apps and the web. Ghozali et al.
[94] used the OWASP Risk Rating to detect security vulner-
abilities, including open redirects, in PHP web applications,
emphasizing the importance of regular updates. Riadi et al.
[95] discussed the susceptibility of framework-based websites
to injection attacks, including open redirects. Gadient et al.
[38] analyzed web communications in mobile apps, including

13

open redirects, highlighting the prevalence of insecure HTTP
connections in closed-source apps.

VIII. CONCLUSION

In this paper, we perform the first systematic security study
of dedicated URL shortening services. Specifically, we identify
a significant security concern—weaknesses in DUSS URL
validation, leading to a novel attack called a Misdirection
Attack. We discover 22 vulnerable DUSSs out of 88 popular
services, resulting in severe consequences, including phishing
and code injection in millions of users’ mobile devices.

ACKNOWLEDGEMENT

We would like to thank Haipei Wang, Pan Huang, and
Congcong Zhang for providing technical assistance and for
their help with the preparation of figures in this paper. We also
thank the anonymous reviewers for their insightful comments
that helped improve the quality of the paper.

This work was supported in part by the National Key
Research and Development Program (2021YFB3101200),
National Natural Science Foundation of China (62172104,
62172105, 62472096, 62102093, 62102091, 62302101,
62402114, 62402116, 62202106), and Shanghai Pilot Pro-
gram for Basic Research - FuDan University 21TQ1400100
(21TQ012). Min Yang is the corresponding author, and a
faculty of Shanghai Institute of Intelligent Electronics &
Systems, and Engineering Research Center of Cyber Security
Auditing and Monitoring, Ministry of Education, China.

REFERENCES

[1] (2023) Beware of linkedin slinks! [Online]. Available: https://wp.nyu.
edu/itsecurity/2022/02/10/beware-of-linkedin-slinks/

[2] (2023) Bitly — url shortener. [Online]. Available: https://bitly.com
[3] (2023) Apt28. [Online]. Available: https://www.secureworks.com/

research/iron-twilight-supports-active-measures
[4] (2023) Nasa.gov: Behind the page. [Online]. Available: https:

//blogs.nasa.gov/nasadotgov/tag/recently-on-nasa-gov/
[5] (2023) Spammers abuse .gov url shortener service in work-at-home

scams. [Online]. Available: http://www.pcworld.com/article/2012800/
spammers-abuse-gov-url-shortener-service-in-workathome-scams.html

[6] (2024) Dropbox’s url shortener abused by spammers —
infoworld. [Online]. Available: https://www.infoworld.com/article/
2619285/dropbox-s-url-shortener-abused-by-spammers.html

[7] (2024) Beware of linkedin slinks! – nyu it security news and
alerts. [Online]. Available: https://wp.nyu.edu/itsecurity/2022/02/10/
beware-of-linkedin-slinks/

[8] S. Hamdi, A. L. Gancarski, A. Bouzeghoub, and S. B. Yahia, “Tison:
Trust inference in trust-oriented social networks,” ACM Transactions on
Information Systems (TOIS), vol. 34, no. 3, pp. 1–32, 2016.

[9] G. Liu, Y. Wang, and M. Orgun, “Trust transitivity in complex social
networks,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 25, no. 1, 2011, pp. 1222–1229.

[10] A. Neumann, J. Barnickel, and U. Meyer, “Security and privacy impli-
cations of url shortening services,” in Proceedings of the Workshop on
Web 2.0 Security and Privacy, 2010.

[11] F. Maggi, A. Frossi, S. Zanero, G. Stringhini, B. Stone-Gross,
C. Kruegel, and G. Vigna, “Two years of short urls internet measure-
ment: security threats and countermeasures,” in proceedings of the 22nd
international conference on World Wide Web, 2013, pp. 861–872.

[12] N. Gupta, A. Aggarwal, and P. Kumaraguru, “bit. ly/malicious: Deep
dive into short url based e-crime detection,” in 2014 APWG Symposium
on Electronic Crime Research (eCrime). IEEE, 2014, pp. 14–24.

[13] S. Albakry, K. Vaniea, and M. K. Wolters, “What is this url’s destination?
empirical evaluation of users’ url reading,” in Proceedings of the 2020
CHI conference on human factors in computing systems, 2020, pp. 1–12.

[14] N. Fukushi, T. Koide, D. Chiba, H. Nakano, and M. Akiyama, “An-
alyzing security risks of ad-based url shortening services caused by
users’ behaviors,” in Security and Privacy in Communication Networks:
17th EAI International Conference, SecureComm 2021, Virtual Event,
September 6–9, 2021, Proceedings, Part II 17. Springer, 2021, pp.
3–22.

[15] G. Hong, M. Wu, P. Chen, X. Liao, G. Ye, and M. Yang, “Understanding
and detecting abused image hosting modules as malicious services,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023, pp. 3213–3227.

[16] X. Liao, S. Alrwais, K. Yuan, L. Xing, X. Wang, S. Hao, and R. Beyah,
“Lurking malice in the cloud: Understanding and detecting cloud
repository as a malicious service,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp. 1541–1552.

[17] T. Watanabe, E. Shioji, M. Akiyama, and T. Mori, “Melting pot
of origins: Compromising the intermediary web services that rehost
websites.” in NDSS, 2020.

[18] M. Squarcina, M. Tempesta, L. Veronese, S. Calzavara, and M. Maffei,
“Can i take your subdomain? exploring {Same-Site} attacks in the
modern web,” in 30th USENIX Security Symposium (USENIX Security
21), 2021, pp. 2917–2934.

[19] (2023) China unicom operating data. [Online]. Available: https:
//www.chinaunicom.com.hk/sc/ir/operating.php?type=monthly

[20] (2024) China unicom mobile app. [Online]. Available: https://iservice.
10010.com/e4/PublicitychannelView/phone new.html

[21] (2024) China unicom: Corporate social responsibility report.
[Online]. Available: https://www.chinaunicom.com.hk/en/esg/csr2017/
csr2017 14.pdf

[22] Z. Li, W. Wang, C. Wilson, J. Chen, C. Qian, T. Jung, L. Zhang, K. Liu,
X. Li, and Y. Liu, “Fbs-radar: Uncovering fake base stations at scale in
the wild.” in NDSS, 2017.

[23] Y. Zhang, B. Liu, C. Lu, Z. Li, H. Duan, S. Hao, M. Liu, Y. Liu,
D. Wang, and Q. Li, “Lies in the air: Characterizing fake-base-station
spam ecosystem in china,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp. 521–
534.

[24] (2023) Applink. [Online]. Available: https://developer.android.com/
studio/write/app-link-indexing

[25] (2023) Webview. [Online]. Available: https://developer.android.com/
reference/android/webkit/WebView

[26] (2024) Graph api: Meta for developers. [Online]. Available: https:
//developers.facebook.com/docs/graph-api

[27] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński,
and W. Joosen, “Tranco: A research-oriented top sites ranking hardened
against manipulation,” in Proceedings of the 26th Annual Network and
Distributed System Security Symposium, ser. NDSS 2019, Feb. 2019.

[28] (2023) Similarweb: Website traffic - check and analyze any website.
[Online]. Available: https://www.similarweb.com/

[29] (2023) Tinyurl — url shortener. [Online]. Available: https://tinyurl.com/
app/pricing

[30] (2023) Rebrandly — url shortener. [Online]. Available: https:
//www.rebrandly.com/

[31] (2023) Branch — url shortener. [Online]. Available: https://www.
branch.io/

[32] (2023) Appsflyer — url shortener. [Online]. Available: https:
//www.appsflyer.com/

[33] J. Reynolds, A. Bates, and M. Bailey, “Equivocal urls: Understanding
the fragmented space of url parser implementations,” in European
Symposium on Research in Computer Security. Springer, 2022, pp.
166–185.

[34] X. Han, Y. Zhang, X. Zhang, Z. Chen, M. Wang, Y. Zhang,
S. Ma, Y. Yu, E. Bertino, and J. Li, “Medusa attack: Exploring
security hazards of In-App QR code scanning,” in 32nd USENIX
Security Symposium (USENIX Security 23). Anaheim, CA: USENIX
Association, Aug. 2023, pp. 4607–4624. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity23/presentation/han-xing

[35] (2023) Url format bypass. [Online]. Available: https://book.hacktricks.
xyz/pentesting-web/ssrf-server-side-request-forgery/url-format-bypass

[36] T. Li, X. Wang, M. Zha, K. Chen, X. Wang, L. Xing, X. Bai, N. Zhang,
and X. Han, “Unleashing the walking dead: Understanding cross-app
remote infections on mobile webviews,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 829–844.

14

https://wp.nyu.edu/itsecurity/2022/02/10/beware-of-linkedin-slinks/
https://wp.nyu.edu/itsecurity/2022/02/10/beware-of-linkedin-slinks/
https://bitly.com
https://www.secureworks.com/research/iron-twilight-supports-active-measures
https://www.secureworks.com/research/iron-twilight-supports-active-measures
https://blogs.nasa.gov/nasadotgov/tag/recently-on-nasa-gov/
https://blogs.nasa.gov/nasadotgov/tag/recently-on-nasa-gov/
http://www.pcworld.com/article/2012800/spammers-abuse-gov-url-shortener-service-in-workathome-scams.html
http://www.pcworld.com/article/2012800/spammers-abuse-gov-url-shortener-service-in-workathome-scams.html
https://www.infoworld.com/article/2619285/dropbox-s-url-shortener-abused-by-spammers.html
https://www.infoworld.com/article/2619285/dropbox-s-url-shortener-abused-by-spammers.html
https://wp.nyu.edu/itsecurity/2022/02/10/beware-of-linkedin-slinks/
https://wp.nyu.edu/itsecurity/2022/02/10/beware-of-linkedin-slinks/
https://www.chinaunicom.com.hk/sc/ir/operating.php?type=monthly
https://www.chinaunicom.com.hk/sc/ir/operating.php?type=monthly
https://iservice.10010.com/e4/PublicitychannelView/phone_new.html
https://iservice.10010.com/e4/PublicitychannelView/phone_new.html
https://www.chinaunicom.com.hk/en/esg/csr2017/csr2017_14.pdf
https://www.chinaunicom.com.hk/en/esg/csr2017/csr2017_14.pdf
https://developer.android.com/studio/write/app-link-indexing
https://developer.android.com/studio/write/app-link-indexing
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://developers.facebook.com/docs/graph-api
https://developers.facebook.com/docs/graph-api
https://www.similarweb.com/
https://tinyurl.com/app/pricing
https://tinyurl.com/app/pricing
https://www.rebrandly.com/
https://www.rebrandly.com/
https://www.branch.io/
https://www.branch.io/
https://www.appsflyer.com/
https://www.appsflyer.com/
https://www.usenix.org/conference/usenixsecurity23/presentation/han-xing
https://www.usenix.org/conference/usenixsecurity23/presentation/han-xing
https://book.hacktricks.xyz/pentesting-web/ssrf-server-side-request-forgery/url-format-bypass
https://book.hacktricks.xyz/pentesting-web/ssrf-server-side-request-forgery/url-format-bypass

[37] A. Mendoza and G. Gu, “Mobile application web api reconnaissance:
Web-to-mobile inconsistencies & vulnerabilities,” in 2018 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 2018, pp. 756–769.

[38] P. Gadient, M. Ghafari, M.-A. Tarnutzer, and O. Nierstrasz, “Web apis
in android through the lens of security,” in 2020 IEEE 27th international
conference on software analysis, evolution and reengineering (SANER).
IEEE, 2020, pp. 13–22.

[39] T. Badgett, G. J. Myers et al., The Art of Software Testing. Wiley
Online Library, 2023.

[40] (2024) Flowdroid static data flow tracker. [Online]. Available:
https://github.com/secure-software-engineering/FlowDroid

[41] (2024) Okhttp. [Online]. Available: https://github.com/square/okhttp
[42] (2024) Moshi. [Online]. Available: https://github.com/square/moshi
[43] (2024) Retrofit. [Online]. Available: https://github.com/square/retrofit
[44] (2023) Frida. [Online]. Available: https://github.com/frida
[45] (2024) xray. [Online]. Available: https://github.com/chaitin/xray
[46] (2019) Aquatone - a tool for domain flyovers. [Online]. Available:

https://github.com/michenriksen/aquatone#installation
[47] Y. He, L. Zhang, Z. Yang, Y. Cao, K. Lian, S. Li, W. Yang, Z. Zhang,

M. Yang, Y. Zhang, and H. Duan, “Textexerciser: Feedback-driven text
input exercising for android applications,” in 2020 IEEE Symposium on
Security and Privacy (SP), 2020, pp. 1071–1087.

[48] (2023) Appium. [Online]. Available: https://appium.io/docs/en/2.4/
[49] (2023) Google play. [Online]. Available: https://play.google.com/
[50] (2023) Wandoujia. [Online]. Available: https://www.wandoujia.com/
[51] (2024) Wala. [Online]. Available: https://github.com/wala/WALA
[52] A. Fass, D. F. Somé, M. Backes, and B. Stock, “Doublex: Statically

detecting vulnerable data flows in browser extensions at scale,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 1789–1804.

[53] (2020) Puppeteer. [Online]. Available: https://pptr.dev/
[54] (2024) Chrome debugging protocol interface. [Online]. Available:

https://github.com/cyrus-and/chrome-remote-interface
[55] G. Stivala and G. Pellegrino, “Deceptive previews: A study of the link

preview trustworthiness in social platforms,” 2020.
[56] (2023) Phishtank. [Online]. Available: https://phishtank.org/
[57] V. Rastogi, R. Shao, Y. Chen, X. Pan, S. Zou, and R. D. Riley, “Are

these ads safe: Detecting hidden attacks through the mobile app-web
interfaces.” in NDSS, 2016.

[58] C. Lever, R. Walls, Y. Nadji, D. Dagon, P. McDaniel, and M. Anton-
akakis, “Domain-z: 28 registrations later measuring the exploitation of
residual trust in domains,” in 2016 IEEE Symposium on Security and
Privacy (SP), 2016, pp. 691–706.

[59] S. Wang, M. Almashor, A. Abuadbba, R. Sun, M. Xue, C. Wang,
R. Gaire, S. Nepal, and S. Camtepe, “Doitrust: Dissecting on-chain
compromised internet domains via graph learning.” in NDSS, 2023.

[60] (2023) Nvd - search vulnerability database. [Online]. Available:
https://nvd.nist.gov/vuln/search

[61] (2023) Cnvd database. [Online]. Available: https://www.cnvd.org.cn/
[62] (2023) The real impact of an open redirect vulnerabil-

ity. [Online]. Available: https://blog.detectify.com/industry-insights/
the-real-impact-of-an-open-redirect/

[63] (2024) Vulnerabilities — owasp foundation. [Online]. Available:
https://owasp.org/www-community/vulnerabilities/

[64] (2024) Cwe-601: Url redirection to untrusted site (’open redirect’).
[Online]. Available: https://cwe.mitre.org/data/definitions/601.html

[65] (2024) Subdomain takeovers - security on the web —
mdn. [Online]. Available: https://developer.mozilla.org/en-US/docs/
Web/Security/Subdomain takeovers

[66] (2024) Cwe-672: Operation on a resource after expiration or release.
[Online]. Available: https://cwe.mitre.org/data/definitions/672.html

[67] (2023) Oauth. [Online]. Available: https://oauth.net/2/
[68] (2023) Cve-2021-25640. [Online]. Available: https://nvd.nist.gov/vuln/

detail/CVE-2021-25640
[69] (2023) Cve-2022-24969. [Online]. Available: https://nvd.nist.gov/vuln/

detail/CVE-2022-24969
[70] (2023) spamhaus. [Online]. Available: https://check.spamhaus.org/
[71] (2023) Mxtoolbox. [Online]. Available: https://mxtoolbox.com/

blacklists.aspx
[72] (2023) Google safebrowsing. [Online]. Available: https://safebrowsing.

google.com/
[73] (2023) Virustotal. [Online]. Available: https://www.virustotal.com/gui/

home/url

[74] (2023) Commercial malicious website blacklist services. [Online].
Available: https://malwareurl.com

[75] (2023) Threat intelligence feeds dns blocklist. [Online]. Available: https:
//gitlab.com/hagezi/mirror/-/raw/main/dns-blocklists/domains/tif.txt

[76] (2023) Fake dns blocklist. [Online]. Available: https://gitlab.com/hagezi/
mirror/-/raw/main/dns-blocklists/adblock/fake.txt

[77] P. Peng, L. Yang, L. Song, and G. Wang, “Opening the blackbox of
virustotal: Analyzing online phishing scan engines,” in Proceedings of
the Internet Measurement Conference, 2019, pp. 478–485.

[78] (2023) Virustotal += malware domain block-
list. [Online]. Available: https://blog.virustotal.com/2012/06/
virustotal-malware-domain-blocklist.html

[79] M. Bailey, D. Dittrich, E. Kenneally, and D. Maughan, “The menlo
report,” IEEE Security & Privacy, vol. 10, no. 2, pp. 71–75, 2012.

[80] J. Van Der Ham, “Ethics and internet measurements,” in 2017 IEEE
Security and Privacy Workshops (SPW). IEEE, 2017, pp. 247–251.

[81] K. Macnish and J. Van der Ham, “Ethics in cybersecurity research and
practice,” Technology in society, vol. 63, p. 101382, 2020.

[82] B. Li, J. Lin, F. Li, Q. Wang, Q. Li, J. Jing, and C. Wang, “Certificate
transparency in the wild: Exploring the reliability of monitors,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 2505–2520.

[83] A. Sathiaseelan, M. S. Seddiki, S. Stoyanov, and D. Trossen, “Social sdn:
Online social networks integration in wireless network provisioning,” in
Proceedings of the 2014 ACM conference on SIGCOMM, 2014, pp.
375–376.

[84] M. S. Rahman, T.-K. Huang, H. V. Madhyastha, and M. Faloutsos,
“Efficient and scalable socware detection in online social networks,”
in 21st USENIX Security Symposium (USENIX Security 12), 2012, pp.
663–678.

[85] G. Kontaxis, M. Polychronakis, A. D. Keromytis, and E. P. Markatos,
“{Privacy-Preserving} social plugins,” in 21st USENIX Security Sympo-
sium (USENIX Security 12), 2012, pp. 631–646.

[86] (2024) Xray documentation. [Online]. Available: https://docs.xray.cool/
tools/xray/BasicIntroduction

[87] (2024) Vulnerability disclosure - owasp cheat sheet series. [Online].
Available: https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability
Disclosure Cheat Sheet.html

[88] D. Li, F. Zhang, and C. Liu, “Poster: Abusing url shortening services
for stealthy and resilient message transmitting,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 1451–1453. [Online]. Available:
https://doi.org/10.1145/2660267.2662390

[89] X. Li, B. Liu, X. Bai, M. Zhang, Q. Zhang, Z. Li, H. Duan, and
Q. Li, “Ghost domain reloaded: Vulnerable links in domain name
delegation and revocation,” in Proceedings of the 30th Annual Network
and Distributed System Security Symposium (NDSS’23). https://doi.
org/10.14722/ndss, 2023.

[90] M. Wei, “Domain shadowing: Leveraging content delivery networks for
robust {Blocking-Resistant} communications,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 3327–3343.

[91] D. Liu, S. Hao, and H. Wang, “All your dns records point to us: Under-
standing the security threats of dangling dns records,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 1414–1425.

[92] J. So, N. Miramirkhani, M. Ferdman, and N. Nikiforakis, “Domains
do change their spots: Quantifying potential abuse of residual trust,” in
2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp.
2130–2144.

[93] C. Lever, R. Walls, Y. Nadji, D. Dagon, P. McDaniel, and M. Anton-
akakis, “Domain-z: 28 registrations later measuring the exploitation of
residual trust in domains,” in 2016 IEEE symposium on security and
privacy (SP). IEEE, 2016, pp. 691–706.

[94] B. Ghozali, K. Kusrini, and S. Sudarmawan, “Mendeteksi kerentanan
keamanan aplikasi website menggunakan metode owasp (open web
application security project) untuk penilaian risk rating,” Creative In-
formation Technology Journal, vol. 4, no. 4, pp. 264–275, 2019.

[95] I. Riadi, R. Umar, and W. Sukarno, “Vulnerability of injection attacks
against the application security of framework based websites open web
access security project (owasp),” J. Inform, vol. 12, no. 2, pp. 53–57,
2018.

[96] (2024) Burp suite - application security testing software. [Online].
Available: https://portswigger.net/burp

15

https://github.com/secure-software-engineering/FlowDroid
https://github.com/square/okhttp
https://github.com/square/moshi
https://github.com/square/retrofit
https://github.com/frida
https://github.com/chaitin/xray
https://github.com/michenriksen/aquatone#installation
https://appium.io/docs/en/2.4/
https://play.google.com/
https://www.wandoujia.com/
https://github.com/wala/WALA
https://pptr.dev/
https://github.com/cyrus-and/chrome-remote-interface
https://phishtank.org/
https://nvd.nist.gov/vuln/search
https://www.cnvd.org.cn/
https://blog.detectify.com/industry-insights/the-real-impact-of-an-open-redirect/
https://blog.detectify.com/industry-insights/the-real-impact-of-an-open-redirect/
https://owasp.org/www-community/vulnerabilities/
https://cwe.mitre.org/data/definitions/601.html
https://developer.mozilla.org/en-US/docs/Web/Security/Subdomain_takeovers
https://developer.mozilla.org/en-US/docs/Web/Security/Subdomain_takeovers
https://cwe.mitre.org/data/definitions/672.html
https://oauth.net/2/
https://nvd.nist.gov/vuln/detail/CVE-2021-25640
https://nvd.nist.gov/vuln/detail/CVE-2021-25640
https://nvd.nist.gov/vuln/detail/CVE-2022-24969
https://nvd.nist.gov/vuln/detail/CVE-2022-24969
https://check.spamhaus.org/
https://mxtoolbox.com/blacklists.aspx
https://mxtoolbox.com/blacklists.aspx
https://safebrowsing.google.com/
https://safebrowsing.google.com/
https://www.virustotal.com/gui/home/url
https://www.virustotal.com/gui/home/url
https://malwareurl.com
https://gitlab.com/hagezi/mirror/-/raw/main/dns-blocklists/domains/tif.txt
https://gitlab.com/hagezi/mirror/-/raw/main/dns-blocklists/domains/tif.txt
https://gitlab.com/hagezi/mirror/-/raw/main/dns-blocklists/adblock/fake.txt
https://gitlab.com/hagezi/mirror/-/raw/main/dns-blocklists/adblock/fake.txt
https://blog.virustotal.com/2012/06/virustotal-malware-domain-blocklist.html
https://blog.virustotal.com/2012/06/virustotal-malware-domain-blocklist.html
https://docs.xray.cool/tools/xray/BasicIntroduction
https://docs.xray.cool/tools/xray/BasicIntroduction
https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html
https://doi.org/10.1145/2660267.2662390
https://portswigger.net/burp

[97] (2024) Server side request forgery prevention - owasp cheat sheet series.
[Online]. Available: https://cheatsheetseries.owasp.org/cheatsheets/
Server Side Request Forgery Prevention Cheat Sheet.html

APPENDIX

A. USE CASES FOR MOTIVATING EXAMPLE

Here, we give more detailed use cases for attackers ana-
lyzing the DUSS link shortening API. First, to get network
traffic from the China Unicom application, the attacker must
set up a man-in-the-middle proxy server, such as using Burp-
suite [96], and configure a trusted certificate in the mobile
device (e.g., “/system/etc/security/cacerts” in Android) to get
traffic encrypted using TLS. Second, to manipulate the API
request obtained by the tool, Burpsuite can save the intercepted
request traffic and replay it after the attacker has changed
specific fields (e.g., replaced the long URL with a malicious
one).

B. POPULAR DUSS

TABLE III
TOP 15 SELF-DEVELOPED DUSSS.

DUSS Corporation Link Domain Tranco Rank
1 Baidu j.map.baidu.com 8
2 Reddit www.reddit.com 35
3 Youtube youtu.be 40
4 Google Map goo.gl 57
5 Wangyi u.163.com 61
6 TikTok www.tiktok.com 68
7 Skype join.skype.com 87
8 Aliexpress a.aliexpress.com 122
9 Booking.com www.booking.com 166
10 Huawei url.cloud.huawei.com 295
11 Snapchat t.snapchat.com 337
12 Ozon ozon.ru 347
13 Discord discord.gg 539
14 Coupang link.coupang.com 785
15 Facebook fb.watch 1055

TABLE IV
POPULAR THIRD-PARTY HOSTING SERVICES.

Commercial Service # of Users Charge
1 Bitly 500,000+ paid
2 TinyURL 102,035+ paid
3 Rebrandly 30,000+ paid
4 Branch IO 100,000+ paid
5 AppsFlyer 12,000+ paid

C. POIS AND SDK ENDPOINTS

D. ANALYSIS OF SSRF PROTECTION.

We choose to analyze the security impact of compromised
shortened links on SSRF protection theoretically. The reasons
are two-fold. First, unlike bypassing previous checkers, the im-
pact of SSRF may inevitably affect the backend server (where
a resource loading happens). Second, there lacks of standard
RFC or framework to implement our own SSRF protection for
testing. However, the vulnerability described in OWASP [97]
emphasizes that if the server enforces SSRF protection using

a domain allowlist but fails to disable subsequent redirection,
then SSRF can occur. Since the DUSS is intended to serve
the web sites belong to the corporations, thus their domain is
likely to be configured in the allowlist, leading to potential
attacks. Bypassing SSRF protection exposes the remote server
to various threats, including sensitive information leakage and
remote code execution.

E. TEST CASE DESIGN

Table VII illustrates our test case design details in mapping
with different vulnerability categories. Given the original (first
requested) URL oURL to be shortened as is trusted, Ditto
either mutates or replaces the scheme, domain, and path of
it with predefined payload. For example, Ditto mutates the
host part of oURL allowed.com into evil.com\.allowed.com to
test whether the domain parser has flawed sanitizer.

16

https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html

TABLE V
ANDROID SDK METHODS PROVIDED BY POPULAR THIRD-PARTY HOSTING SERVICES.

Commercial Service Method Signature
1 Bitly <com.bitly.Bitly: void shorten(java.lang.String, com.bitly.Bitly$Callback)>
2 TinyURL Not Support
3 Rebrandly Not Support
4 Branch IO <io.branch.referral.Branch: String generateLinkSync(io.branch.referral.ServerRequestCreateUrl)>
5 AppsFlyer <com.appsflyer.share.LinkGenerator: void generateLink(Context, CreateOneLinkHttpTask.ResponseListener)>

TABLE VI
HTTP URL ENDPOINTS IN POPULAR THIRD-PARTY HOSTING SERVICES.

Commercial Service API
1 Bitly https://api-ssl.bitly.com/v4/shorten
2 TinyURL https://api.tinyurl.com/create
3 Rebrandly https://api.rebrandly.com/v1/links
4 Branch IO https://api2.branch.io/v1/url
5 AppsFlyer https://onelink.appsflyer.com/short link/v1/onelink-id

TABLE VII
TEST CASE DESIGN TEMPLATES. GIVEN A LEGITIMATE URL (OURL) INTERCEPTED IN THE API TRIGGERING PROCESS, DITTO WILL MODIFY ITS

DOMAIN, SCHEME, AND PATH ACCORDING TO THE TEMPLATE FOR VULNERABILITY TESTING.

Test Scenario Test Case Template Description

Scheme
oURL.scheme ← JavaScript Test sensitive schemes; simultaneously, whether the checker is case-

sensitive or not.
oURL.scheme ← evilscheme Testing customized evil scheme.
oURL.host ← evil.com Whether the checker performs the domain check.Domain Matching oURL.host ← {evil}{oURL.host} Whether the checker uses the ”endswith” or ”contains” function.
oURL.host = {evil.com}\\.{oURL.host} Whether the host extraction can be confused by “\”.
oURL.host = {oURL.host}@{evil.com} Whether the checker has inconsistent host extraction.
oURL.host ← {oURL.host}:x@{evil.com} Whether the checker has inconsistent host extraction.
oURL.host ← a:a@{oURL.host}:b@{evil.com} Whether the checker has inconsistent host extraction.
oURL.host ← {evil.com}%00@{oURL.host} Whether the checker has inconsistent host extraction.

Domain Parsing

oURL.host ← {evil.com}\@{oURL.host} Whether the checker has inconsistent host extraction.
oURL ← common domains Test with attacker controlled shared domain names.Domain Asset oURL ← vulnerable(oURL.host) Test with URLs vulnerable to XSS, open redirection; domain expira-

tion or takeover.

17

	Introduction
	Background
	Dedicated URL Shortening Service
	Misdirection Attack
	Definition
	Motivating Example
	Threat Model

	Scope of Problem

	DUSS: A Preliminary Study
	DUSS Popularity
	Popular DUSS Infrastructure
	Security Design and Attack Vector
	Security Design
	Attack Vector

	Vulnerable DUSS in the wild
	Ditto Overview
	Technique Challenge
	Solutions Overview

	Link Shortening API Inference
	Web API Locator
	Link shortening inference

	Directed API Trigger
	URL Object Provenance Analysis
	Application Instrumentation
	UI-driven API Trigger

	Vulnerability Detection
	Test Case Generation
	Decision Tree Guidance

	Ditto Implementation
	Evaluation

	Security Impact: A Survey Study
	If Social Users Hold Implicit Trust
	If Security Developers Hold Implicit Trust
	Domain-based Checkers
	Analysis Methodology
	Evaluation
	Case Studies

	Discussion
	Lessons learned and mitigation
	Ethics Concerns

	Related Work
	Conclusion
	References
	Use Cases for Motivating Example
	Popular DUSS
	POIs and SDK Endpoints
	Analysis of SSRF protection.
	Test Case Design

